LEADER 05507nam 2200661 450 001 9910132202003321 005 20200520144314.0 010 $a3-527-68110-8 010 $a3-527-68107-8 010 $a3-527-68108-6 035 $a(CKB)3710000000121875 035 $a(EBL)1701414 035 $a(SSID)ssj0001305468 035 $a(PQKBManifestationID)11850712 035 $a(PQKBTitleCode)TC0001305468 035 $a(PQKBWorkID)11250347 035 $a(PQKB)10719588 035 $a(OCoLC)881028799 035 $a(Au-PeEL)EBL1701414 035 $a(CaPaEBR)ebr10881255 035 $a(CaONFJC)MIL615339 035 $a(MiAaPQ)EBC1701414 035 $a(EXLCZ)993710000000121875 100 $a20140620h20142014 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aFringe pattern analysis for optical metrology $etheory, algorithms, and applications /$fManuel Servin, J. Antonio Quiroga, and J. Moises Padilla 210 1$aWeinheim, Germany :$cWiley-VCH Verlag GmbH & Co. KGaA,$d2014. 210 4$dİ2014 215 $a1 online resource (345 p.) 300 $aDescription based upon print version of record. 311 $a3-527-41152-6 320 $aIncludes bibliographical references and index. 327 $aFringe Pattern Analysis for Optical Metrology; Contents; Preface; List of Symbols and Acronyms; Chapter 1 Digital Linear Systems; 1.1 Introduction to Digital Phase Demodulation in Optical Metrology; 1.1.1 Fringe Pattern Demodulation as an Ill-Posed Inverse Problem; 1.1.2 Adding a priori Information to the Fringe Pattern: Carriers; 1.1.3 Classification of Phase Demodulation Methods in Digital Interferometry; 1.2 Digital Sampling; 1.2.1 Signal Classification; 1.2.2 Commonly Used Functions; 1.2.3 Impulse Sampling; 1.2.4 Nyquist-Shannon Sampling Theorem; 1.3 Linear Time-Invariant (LTI) Systems 327 $a1.3.1 Definition and Properties1.3.2 Impulse Response of LTI Systems; 1.3.3 Stability Criterion: Bounded-Input Bounded-Output; 1.4 Z-Transform Analysis of Digital Linear Systems; 1.4.1 Definition and Properties; 1.4.2 Region of Convergence (ROC); 1.4.3 Poles and Zeros of a Z-Transform; 1.4.4 Inverse Z-Transform; 1.4.5 Transfer Function of an LTI System in the Z-Domain; 1.4.6 Stability Evaluation by Means of the Z-Transform; 1.5 Fourier Analysis of Digital LTI Systems; 1.5.1 Definition and Properties of the Fourier Transform; 1.5.2 Discrete-Time Fourier Transform (DTFT) 327 $a1.5.3 Relation Between the DTFT and the Z-Transform1.5.4 Spectral Interpretation of the Sampling Theorem; 1.5.5 Aliasing: Sub-Nyquist Sampling; 1.5.6 Frequency Transfer Function (FTF) of an LTI System; 1.5.7 Stability Evaluation in the Fourier Domain; 1.6 Convolution-Based One-Dimensional (1D) Linear Filters; 1.6.1 One-Dimensional Finite Impulse Response (FIR) Filters; 1.6.2 One-Dimensional Infinite Impulse Response (IIR) Filters; 1.7 Convolution-Based two-dimensional (2D) Linear Filters; 1.7.1 Two-Dimensional (2D) Fourier and Z-Transforms; 1.7.2 Stability Analysis of 2D Linear Filters 327 $a1.8 Regularized Spatial Linear Filtering Techniques1.8.1 Classical Regularization for Low-Pass Filtering; 1.8.2 Spectral Response of 2D Regularized Low-Pass Filters; 1.9 Stochastic Processes; 1.9.1 Definitions and Basic Concepts; 1.9.2 Ergodic Stochastic Processes; 1.9.3 LTI System Response to Stochastic Signals; 1.9.4 Power Spectral Density (PSD) of a Stochastic Signal; 1.10 Summary and Conclusions; Chapter 2 Synchronous Temporal Interferometry; 2.1 Introduction; 2.1.1 Historical Review of the Theory of Phase-Shifting Algorithms (PSAs); 2.2 Temporal Carrier Interferometric Signal 327 $a2.3 Quadrature Linear Filters for Temporal Phase Estimation2.3.1 Linear PSAs Using Real-Valued Low-Pass Filtering; 2.4 The Minimum Three-Step PSA; 2.4.1 Algebraic Derivation of the Minimum Three-Step PSA; 2.4.2 Spectral FTF Analysis of the Minimum Three-Step PSA; 2.5 Least-Squares PSAs; 2.5.1 Temporal-to-Spatial Carrier Conversion: Squeezing Interferometry; 2.6 Detuning Analysis in Phase-Shifting Interferometry (PSI); 2.7 Noise in Temporal PSI; 2.7.1 Phase Estimation with Additive Random Noise; 2.7.2 Noise Rejection in N-Step Least-Squares (LS) PSAs 327 $a2.7.3 Noise Rejection of Linear Tunable PSAs 330 $aThe main objective of this book is to present the basic theoretical principles and practical applications for the classical interferometric techniques and the most advanced methods in the field of modern fringe pattern analysis applied to optical metrology. A major novelty of this work is the presentation of a unified theoretical framework based on the Fourier description of phase shifting interferometry using the Frequency Transfer Function (FTF) along with the theory of Stochastic Process for the straightforward analysis and synthesis of phase shifting algorithms with desired properties such 606 $aDiffraction patterns$xData processing 606 $aImage processing$xData processing 615 0$aDiffraction patterns$xData processing. 615 0$aImage processing$xData processing. 676 $a621.36 700 $aServi?n$b Manuel$0998236 702 $aQuiroga$b J. Antonio 702 $aPadilla$b J. Moises 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910132202003321 996 $aFringe pattern analysis for optical metrology$92289667 997 $aUNINA