LEADER 05369nam 2200733 450 001 9910132157803321 005 20200520144314.0 010 $a1-119-00807-7 010 $a1-119-00476-4 010 $a1-119-00806-9 035 $a(CKB)3710000000218279 035 $a(EBL)1765105 035 $a(SSID)ssj0001411607 035 $a(PQKBManifestationID)11882732 035 $a(PQKBTitleCode)TC0001411607 035 $a(PQKBWorkID)11421904 035 $a(PQKB)10857996 035 $a(OCoLC)891396805 035 $a(MiAaPQ)EBC1765105 035 $a(Au-PeEL)EBL1765105 035 $a(CaPaEBR)ebr10907570 035 $a(CaONFJC)MIL637333 035 $a(OCoLC)892431982 035 $a(PPN)189487682 035 $a(EXLCZ)993710000000218279 100 $a20140822h20142014 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aHydrodynamic bearings /$fDominique Bonneau, Aurelian Fatu, Dominique Souchet 210 1$aLondon, [England] ;$aHoboken, New Jersey :$cISTE :$cWiley,$d2014. 210 4$dİ2014 215 $a1 online resource (221 p.) 225 1 $aNumerical Methods in Engineering Series 300 $aDescription based upon print version of record. 311 $a1-84821-681-5 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $aCover; Title Page; Copyright; Contents; Foreword by J.F. Booker; Foreword by Jean Fre?ne; Preface; Nomenclature; Chapter 1: The Lubricant; 1.1. Description of lubricants; 1.2. The viscosity; 1.2.1. Viscosity - temperature relationship; 1.2.2. Viscosity - pressure relationship; 1.2.3. Viscosity - pressure - temperature relationship; 1.2.4. Non-Newtonian behavior; 1.3. Other lubricant properties; 1.4. Lubricant classification and notation; 1.5. Bibliography; Chapter 2: Equations of Hydrodynamic Lubrication; 2.1. Hypothesis; 2.2. Equation of generalized viscous thin films 327 $a2.3. Equations of hydrodynamic for journal and thrust bearings2.3.1. Specific case of an uncompressible fluid; 2.3.2. Standard Reynolds equation for a journal bearing: general case; 2.3.3. Reynolds equation for a thrust bearing: general case; 2.3.4. Equation of volume flow rate; 2.3.5. Equations of hydrodynamic for journal and thrust bearings lubricated withan isoviscous uncompressible fluid; 2.4. Film rupture; second form of Reynolds equation; 2.5. Particular form of the viscous thin film equation in the case of wall slipping; 2.6. Boundary conditions; lubricant supply 327 $a2.6.1. Conditions on bearing edges2.6.2. Conditions for circular continuity; 2.6.3. Conditions on non-active zone boundaries; 2.6.4. Boundary conditions for supply orifices; 2.7. Flow rate computation; 2.7.1. First assumptions; 2.7.2. Model and additional assumptions; 2.7.3. Pressure expression for the full film fringes on the bearing edges; 2.7.4. Evolution of the width of the full film fringes on the bearing edges; 2.7.4.1. The pressure in the full film fringe remains greater than the cavitationpressure 327 $a2.7.4.2. The pressure in the full film fringe becomes lower than the cavitation pressure2.7.5. Computation of the flow rate for lubricant entering by the bearing sides; 2.8. Computation of efforts exerted by the pressure field and the shear stress field: journal bearing case; 2.9. Computation of efforts exerted by the pressure field and the shear stress field: thrust bearing case; 2.10. Computation of viscous dissipation energy: journal bearing case; 2.11. Computation of viscous dissipation energy: thrust bearing case; 2.12. Different flow regimes; 2.13. Bibliography 327 $aChapter 3: Numerical Resolution of the Reynolds Equation3.1. Definition of the problems to be solved; 3.1.1. Definition of the problems to be solved; 3.1.2. Problem 2: determining of the pressure and the lubricant filling; 3.1.3. Other problems; 3.2. The finite difference method; 3.2.1. Computation grid; 3.2.2. Discretization of standard Reynolds equation (problem 1); 3.2.3. Discretization of modified Reynolds equation (problem 2); 3.3. The finite volume method3; 3.3.1. Mesh of the film domain; 3.3.2. Discretization of the standard Reynolds equation (problem 1) 327 $a3.3.3. Discretization of modified Reynolds equation (problem 2) 330 $a This Series provides the necessary elements to the development and validation of numerical prediction models for hydrodynamic bearings. This book describes the rheological models and the equations of lubrication. It also presents the numerical approaches used to solve the above equations by finite differences, finite volumes and finite elements methods. 410 0$aNumerical methods in engineering series. 606 $aBearings (Machinery) 606 $aFluid-film bearings$xMathematical models 606 $aLubrication and lubricants 615 0$aBearings (Machinery) 615 0$aFluid-film bearings$xMathematical models. 615 0$aLubrication and lubricants. 676 $a621.822 700 $aBonneau$b D$g(Dominique),$0869585 702 $aFatu$b Aurelian 702 $aSouchet$b Dominique 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910132157803321 996 $aHydrodynamic bearings$91941417 997 $aUNINA