LEADER 04256nam 22007815 450 001 9910131386903321 005 20230412151528.0 010 $a3-319-18132-7 024 7 $a10.1007/978-3-319-18132-5 035 $a(CKB)3710000000436832 035 $a(SSID)ssj0001547027 035 $a(PQKBManifestationID)16141089 035 $a(PQKBTitleCode)TC0001547027 035 $a(PQKBWorkID)14796305 035 $a(PQKB)11618546 035 $a(DE-He213)978-3-319-18132-5 035 $a(MiAaPQ)EBC6299205 035 $a(MiAaPQ)EBC5588060 035 $a(Au-PeEL)EBL5588060 035 $a(OCoLC)911009927 035 $a(PPN)186399200 035 $a(EXLCZ)993710000000436832 100 $a20150609d2015 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aHardy Spaces on Ahlfors-Regular Quasi Metric Spaces $eA Sharp Theory /$fby Ryan Alvarado, Marius Mitrea 205 $a1st ed. 2015. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2015. 215 $a1 online resource (VIII, 486 p. 17 illus., 12 illus. in color.) 225 1 $aLecture Notes in Mathematics,$x1617-9692 ;$v2142 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-319-18131-9 327 $aIntroduction. - Geometry of Quasi-Metric Spaces -- Analysis on Spaces of Homogeneous Type -- Maximal Theory of Hardy Spaces -- Atomic Theory of Hardy Spaces -- Molecular and Ionic Theory of Hardy Spaces -- Further Results -- Boundedness of Linear Operators Defined on Hp(X) -- Besov and Triebel-Lizorkin Spaces on Ahlfors-Regular Quasi-Metric Spaces. 330 $aSystematically building an optimal theory, this monograph develops and explores several approaches to Hardy spaces in the setting of Ahlfors-regular quasi-metric spaces. The text is broadly divided into two main parts. The first part gives atomic, molecular, and grand maximal function characterizations of Hardy spaces and formulates sharp versions of basic analytical tools for quasi-metric spaces, such as a Lebesgue differentiation theorem with minimal demands on the underlying measure, a maximally smooth approximation to the identity and a Calderon-Zygmund decomposition for distributions. These results are of independent interest. The second part establishes very general criteria guaranteeing that a linear operator acts continuously from a Hardy space into a topological vector space, emphasizing the role of the action of the operator on atoms. Applications include the solvability of the Dirichlet problem for elliptic systems in the upper-half space with boundary data from Hardy spaces. The tools established in the first part are then used to develop a sharp theory of Besov and Triebel-Lizorkin spaces in Ahlfors-regular quasi-metric spaces. The monograph is largely self-contained and is intended for an audience of mathematicians, graduate students and professionals with a mathematical background who are interested in the interplay between analysis and geometry. 410 0$aLecture Notes in Mathematics,$x1617-9692 ;$v2142 606 $aFourier analysis 606 $aFunctions of real variables 606 $aFunctional analysis 606 $aMeasure theory 606 $aDifferential equations 606 $aFourier Analysis 606 $aReal Functions 606 $aFunctional Analysis 606 $aMeasure and Integration 606 $aDifferential Equations 615 0$aFourier analysis. 615 0$aFunctions of real variables. 615 0$aFunctional analysis. 615 0$aMeasure theory. 615 0$aDifferential equations. 615 14$aFourier Analysis. 615 24$aReal Functions. 615 24$aFunctional Analysis. 615 24$aMeasure and Integration. 615 24$aDifferential Equations. 676 $a515.94 700 $aAlvarado$b Ryan$4aut$4http://id.loc.gov/vocabulary/relators/aut$0716353 702 $aMitrea$b Marius$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910131386903321 996 $aHardy Spaces on Ahlfors-Regular Quasi Metric Spaces$92247672 997 $aUNINA