LEADER 05456nam 2200709 450 001 9910131383403321 005 20230807220058.0 010 $a1-118-53515-4 010 $a1-118-53514-6 010 $a1-118-53516-2 035 $a(CKB)3710000000437290 035 $a(EBL)1895049 035 $a(SSID)ssj0001516334 035 $a(PQKBManifestationID)12628050 035 $a(PQKBTitleCode)TC0001516334 035 $a(PQKBWorkID)11494742 035 $a(PQKB)11148453 035 $a(PQKBManifestationID)16232342 035 $a(PQKB)23160246 035 $a(DLC) 2015018024 035 $a(Au-PeEL)EBL4036148 035 $a(CaPaEBR)ebr11069759 035 $a(CaONFJC)MIL804015 035 $a(Au-PeEL)EBL1895049 035 $a(OCoLC)908554403 035 $a(MiAaPQ)EBC4036148 035 $a(EXLCZ)993710000000437290 100 $a20150713h20152015 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aIntroduction to operational modal analysis /$fRune Brincker, Carlos E. Ventura 205 $a1st ed. 210 1$aChichester, England :$cWiley,$d2015. 210 4$d©2015 215 $a1 online resource (375 p.) 300 $aDescription based upon print version of record. 311 $a1-119-96315-X 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $aCover; Title Page; Copyright; Contents; Preface; Chapter 1 Introduction; 1.1 Why Conduct Vibration Test of Structures?; 1.2 Techniques Available for Vibration Testing of Structures; 1.3 Forced Vibration Testing Methods; 1.4 Vibration Testing of Civil Engineering Structures; 1.5 Parameter Estimation Techniques; 1.6 Brief History of OMA; 1.7 Modal Parameter Estimation Techniques; 1.8 Perceived Limitations of OMA; 1.9 Operating Deflection Shapes; 1.10 Practical Considerations of OMA; 1.11 About the Book Structure; References; Chapter 2 Random Variables and Signals; 2.1 Probability 327 $a2.1.1 Density Function and Expectation2.1.2 Estimation by Time Averaging; 2.1.3 Joint Distributions; 2.2 Correlation; 2.2.1 Concept of Correlation; 2.2.2 Autocorrelation; 2.2.3 Cross Correlation; 2.2.4 Properties of Correlation Functions; 2.3 The Gaussian Distribution; 2.3.1 Density Function; 2.3.2 The Central Limit Theorem; 2.3.3 Conditional Mean and Correlation; References; Chapter 3 Matrices and Regression; 3.1 Vector and Matrix Notation; 3.2 Vector and Matrix Algebra; 3.2.1 Vectors and Inner Products; 3.2.2 Matrices and Outer Products; 3.2.3 Eigenvalue Decomposition 327 $a3.2.4 Singular Value Decomposition3.2.5 Block Matrices; 3.2.6 Scalar Matrix Measures; 3.2.7 Vector and Matrix Calculus; 3.3 Least Squares Regression; 3.3.1 Linear Least Squares; 3.3.2 Bias, Weighting and Covariance; References; Chapter 4 Transforms; 4.1 Continuous Time Fourier Transforms; 4.1.1 Real Fourier Series; 4.1.2 Complex Fourier Series; 4.1.3 The Fourier Integral; 4.2 Discrete Time Fourier Transforms; 4.2.1 Discrete Time Representation; 4.2.2 The Sampling Theorem; 4.3 The Laplace Transform; 4.3.1 The Laplace Transform as a generalization of the Fourier Transform 327 $a4.3.2 Laplace Transform Properties4.3.3 Some Laplace Transforms; 4.4 The Z-Transform; 4.4.1 The Z-Transform as a generalization of the Fourier Series; 4.4.2 Z-Transform Properties; 4.4.3 Some Z-Transforms; 4.4.4 Difference Equations and Transfer Function; 4.4.5 Poles and Zeros; References; Chapter 5 Classical Dynamics; 5.1 Single Degree of Freedom System; 5.1.1 Basic Equation; 5.1.2 Free Decays; 5.1.3 Impulse Response Function; 5.1.4 Transfer Function; 5.1.5 Frequency Response Function; 5.2 Multiple Degree of Freedom Systems; 5.2.1 Free Responses for Undamped Systems 327 $a5.2.2 Free Responses for Proportional Damping5.2.3 General Solutions for Proportional Damping; 5.2.4 Transfer Function and FRF Matrix for Proportional Damping; 5.2.5 General Damping; 5.3 Special Topics; 5.3.1 Structural Modification Theory; 5.3.2 Sensitivity Equations; 5.3.3 Closely Spaced Modes; 5.3.4 Model Reduction (SEREP); 5.3.5 Discrete Time Representations; 5.3.6 Simulation of OMA Responses; References; Chapter 6 Random Vibrations; 6.1 General Inputs; 6.1.1 Linear Systems; 6.1.2 Spectral Density; 6.1.3 SISO Fundamental Theorem; 6.1.4 MIMO Fundamental Theorem; 6.2 White Noise Inputs 327 $a6.2.1 Concept of White Noise 330 $aComprehensively covers the basic principles and practice of Operational Modal Analysis (OMA).Covers all important aspects that are needed to understand why OMA is a practical tool for modal testingCovers advanced topics, including closely spaced modes, mode shape scaling, mode shape expansion and estimation of stress and strain in operational responsesDiscusses practical applications of Operational Modal AnalysisIncludes examples supported by MATLAB® applicationsAccompanied by a website hosting a MATLAB® toolbox for Operational Modal Analysis 606 $aModal analysis 606 $aStructural analysis (Engineering) 615 0$aModal analysis. 615 0$aStructural analysis (Engineering) 676 $a624.171 700 $aBrincker$b Rune$0932584 702 $aVentura$b Carlos 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910131383403321 996 $aIntroduction to operational modal analysis$92098650 997 $aUNINA