LEADER 04322nam 2200601 450 001 9910131321103321 005 20170822123430.0 010 $a1-119-00744-5 010 $a1-119-00742-9 035 $a(CKB)3710000000385545 035 $a(EBL)1895229 035 $a(SSID)ssj0001539618 035 $a(PQKBManifestationID)11860849 035 $a(PQKBTitleCode)TC0001539618 035 $a(PQKBWorkID)11532411 035 $a(PQKB)10958861 035 $a(MiAaPQ)EBC4040477 035 $a(MiAaPQ)EBC1895229 035 $a(EXLCZ)993710000000385545 100 $a20150121d2015 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aPiezoelectric ZnO nanostructure for energy harvesting /$fYamin Leprince-Wang 210 1$aHoboken, New Jersey :$ciSTE/Wiley,$d2015. 215 $a1 online resource (148 p.) 225 1 $aNanoscience and nanotechnology series. Nanotechnologies for energy recovery set ;$vvolume 1 300 $aDescription based upon print version of record. 311 $a1-119-00743-7 311 $a1-84821-718-8 320 $aIncludes bibliographical references and index. 327 $aCover; Title Page; Copyright; Contents; Preface; Acknowledgments; Introduction; 1: Properties of ZnO; 1.1. Crystal structure of ZnO; 1.2. Electrical properties of ZnO and Schottky junction ZnO/Au; 1.3. Optical properties of ZnO; 1.4. Piezoelectricity of ZnO; 2: ZnO Nanostructure Synthesis; 2.1. Electrochemical deposition for ZnO nanostructure; 2.1.1. Electrodeposition of monocrystalline ZnO nanowires and nanorods via template method; 2.1.1.1. Individual nanowire growth; 2.1.1.2. Nanopillar array growth; 2.1.2. ZnO nanowire array growth via electrochemical road 327 $a2.2. Hydrothermal method for ZnO nanowire array growth2.3. Comparative discussion on ZnO nanowire arrays obtained via electrodeposition and hydrothermal method; 2.4. Influence of main parameters of hydrothermal method on ZnO nanowire growth morphology; 2.4.1. Effect of the growth method; 2.4.2. Effect of the growth solution pH value; 2.4.3. Effect of the growth temperature; 2.4.4. Effect of the growth time; 2.5. Electrospinning method for ZnO micro/nanofiber synthesis; 3: Modeling and Simulation of ZnO-Nanowire-Based Energy Harvesting; 3.1. Nanowire in bending mode 327 $a3.1.1. Influence of the nanowire length3.1.2. Influence of the nanowire diameter; 3.1.3. Influence of the aspect ratio; 3.2. Nanowire in compression mode; 3.2.1. Influence of the nanowire length; 3.2.2. Influence of the nanowire diameter; 3.2.3. Influence of the aspect ratio; 3.3. Nanowire arrays in static and vibrational responses; 3.3.1. Nanowire arrays in static and compressive responses; 3.3.2. Nanowire arrays in periodic vibrational response; 4: ZnO-Nanowire-Based Nanogenerators: Principle, Characterization and Device Fabrication; 4.1. Working principle of nanogenerators 327 $a4.2. ZnO-nanowire-based energy harvesting device fabrication4.3. ZnO-nanowire-based energy harvesting device characterization; 4.4. ZnO-nanostructure-based hybrid nanogenerators; Conclusion; Bibliography; Index 330 $a Over the past decade, ZnO as an important II-VI semiconductor has attracted much attention within the scientific community over the world owing to its numerous unique and prosperous properties. This material, considered as a "future material", especially in nanostructural format, has aroused many interesting research works due to its large range of applications in electronics, photonics, acoustics, energy and sensing. The bio-compatibility, piezoelectricity & low cost fabrication make ZnO nanostructure a very promising material for energy harvesting. 410 0$aNanoscience and nanotechnology series.$pNanotechnologies for energy recovery set ;$vv. 1. 606 $aPiezoelectric devices 606 $aPiezoelectricity 608 $aElectronic books. 615 0$aPiezoelectric devices. 615 0$aPiezoelectricity. 676 $a620.10923489 700 $aLeprince-Wang$b Yamin$0989465 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910131321103321 996 $aPiezoelectric ZnO nanostructure for energy harvesting$92262971 997 $aUNINA