LEADER 04346nam 2200661 450 001 9910131256803321 005 20200520144314.0 010 $a1-119-00738-0 010 $a1-119-00737-2 035 $a(CKB)3710000000421616 035 $a(EBL)3563937 035 $a(SSID)ssj0001536536 035 $a(PQKBManifestationID)11862665 035 $a(PQKBTitleCode)TC0001536536 035 $a(PQKBWorkID)11512741 035 $a(PQKB)11365702 035 $a(MiAaPQ)EBC4040476 035 $a(MiAaPQ)EBC3563937 035 $a(Au-PeEL)EBL3563937 035 $a(CaPaEBR)ebr11064043 035 $a(OCoLC)918791452 035 $a(EXLCZ)993710000000421616 100 $a20150620h20152015 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aElectrodes for li-ion batteries$hVolume 2$iMaterials, mechanisms and performance /$fLaure Monconduit, Laurence Croguennec, Re?mi Dedryve?re 210 1$aLondon, England ;$aHoboken, New Jersey :$cISTE :$cWiley,$d2015. 210 4$dİ2015 215 $a1 online resource (102 p.) 225 0 $aEnergy Series : Energy Storage - Batteries and Supercapacitors Set 300 $aDescription based upon print version of record. 311 $a1-84821-721-8 311 $a1-119-00736-4 320 $aIncludes bibliographical references and index. 327 $a""Cover""; ""Title Page""; ""Copyright""; ""Contents""; ""Acknowledgments""; ""Preface""; ""Introduction""; ""Toward efficient Li-ion batteries""; ""1: Negative Electrodes""; ""1.1. Preamble""; ""1.2. Classic materials: insertion mechanism""; ""1.2.1. Graphitic carbon""; ""1.2.1.1. Lithium intercalation mechanisms""; ""1.2.1.2. Electrode/electrolyte interface and additives""; ""1.2.2. Titanium oxides""; ""1.2.2.1. Li4Ti5O12""; ""1.2.2.2. TiO2""; ""1.2.2.3. Different crystallographic arrangements""; ""1.2.2.4. Performances and mechanisms""; ""1.2.2.5. Optimizations"" 327 $a""1.3. Toward other materials and other mechanisms""""1.3.1. Silicon""; ""1.3.1.1. Lithiation/delithiation mechanisms""; ""1.3.1.2. Nanostructured silicon""; ""1.3.1.3. Electrode formulation""; ""1.3.1.4. Aging mechanisms""; ""1.3.2. Other block p elements""; ""1.3.2.1. The alloys""; ""1.3.2.2. The conversion materials""; ""1.3.2.3. Limitations: volume changes and instability of the SEI""; ""1.3.2.4. Nanostructuration""; ""1.3.2.5. Electrode formulation""; ""1.3.2.6. Electrolyte formulation: the effect of additives""; ""1.4. Summary on negative electrodes""; ""2: Positive Electrodes"" 327 $a""2.1. Preamble""""2.2. Layered transition metal oxides as positive electrode materials for Li-ion batteries: from LiCoO2 to Li1+xM1-xO2""; ""2.2.1. The layered oxide LiCoO2: the starting point""; ""2.2.2. From LiNiO2, initially explored as an alternative to LiCoO2, to the commercialization of LiNi0.80Co0.15Al0.05O2 (NCA) and LiNi1/3Mn1/3Co1/3O2 (NMC)""; ""2.2.3. Electrode/electrolyte interfaces and aging phenomena in layered oxides""; ""2.2.4. High-capacity Li-rich layered oxides""; ""2.2.4.1. Toward unprecedented gravimetric capacities"" 327 $a""2.2.4.2. Surface phenomena and electrode/electrolyte interface stabilization""""2.2.4.3. Conclusion""; ""2.3. Alternatives to layered oxides""; ""2.3.1. Materials with spinel structure: from LiMn2O4 to LiNi1/2Mn3/2O4""; ""2.3.1.1. LiMn2O4, a material with three-dimensional structure""; ""2.3.1.2. Dissolution of LiMn2O4 at the interface with the electrolyte""; ""2.3.1.3. LiNi0.5Mn1.5O4: toward high potentials""; ""2.3.1.4. Improving the electrode/electrolyte interface at high potential""; ""2.3.2. The olivine phase LiFePO4: a small revolution""; ""Conclusion""; ""Bibliography""; ""Index"" 606 $aElectric batteries$xMaterials 606 $aEnergy storage$xMaterials 606 $aPower electronics$xMaterials 615 0$aElectric batteries$xMaterials. 615 0$aEnergy storage$xMaterials. 615 0$aPower electronics$xMaterials. 676 $a621.31242 700 $aMonconduit$b Laure$0863642 702 $aCroguennec$b Laurence 702 $aDedryve?re$b Re?mi 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910131256803321 996 $aElectrodes for li-ion batteries$91927602 997 $aUNINA