LEADER 02834nam 2200709 a 450 001 9910131029103321 005 20200520144314.0 010 $a9786613140951 010 $a9781283140959 010 $a1283140950 010 $a9783527638086 010 $a3527638083 010 $a9783527638093 010 $a3527638091 010 $a9783527638079 010 $a3527638075 035 $a(CKB)3460000000003443 035 $a(EBL)697816 035 $a(SSID)ssj0000506277 035 $a(PQKBManifestationID)11358794 035 $a(PQKBTitleCode)TC0000506277 035 $a(PQKBWorkID)10515784 035 $a(PQKB)10561228 035 $a(MiAaPQ)EBC697816 035 $a(PPN)197688977 035 $a(OCoLC)729724698 035 $a(Perlego)1011674 035 $a(EXLCZ)993460000000003443 100 $a20120111d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aApplied statistics for network biology $emethods in system biology /$fedited by Matthias Dehmer ... [et al.] 210 $aWeinheim, Germany $cWiley-Blackwell$d2011 215 $a1 online resource (480 p.) 225 1 $aQuantitative and network biology ;$vv. 1 300 $aDescription based upon print version of record. 311 08$a9783527327508 311 08$a3527327509 320 $aIncludes bibliographical references and index. 327 $apt. 1. Modeling, simulation, and meaning of gene networks -- pt. 2. Inference of gene networks -- pt. 3. Analysis of gene networks -- pt. 4. Systems approach to diseases. 330 $aThe book introduces to the reader a number of cutting edge statistical methods which can e used for the analysis of genomic, proteomic and metabolomic data sets. In particular in the field of systems biology, researchers are trying to analyze as many data as possible in a given biological system (such as a cell or an organ). The appropriate statistical evaluation of these large scale data is critical for the correct interpretation and different experimental approaches require different approaches for the statistical analysis of these data. This book is written by biostatisticians and mathemati 410 0$aQuantitative and network biology ;$vv. 1. 606 $aSystems biology$xStatistical methods 606 $aGenomics 606 $aComputational biology 606 $aBioinformatics 615 0$aSystems biology$xStatistical methods. 615 0$aGenomics. 615 0$aComputational biology. 615 0$aBioinformatics. 676 $a570.727 701 $aDehmer$b Matthias$0860612 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910131029103321 996 $aApplied statistics for network biology$91920474 997 $aUNINA