LEADER 01610oam 2200505zu 450 001 9910130932903321 005 20210807004637.0 010 $a1-118-66382-9 035 $a(CKB)3450000000004422 035 $a(SSID)ssj0000726615 035 $a(PQKBManifestationID)11432963 035 $a(PQKBTitleCode)TC0000726615 035 $a(PQKBWorkID)10674903 035 $a(PQKB)10880592 035 $a(PPN)179232037 035 $a(EXLCZ)993450000000004422 100 $a20160829d1991 uy 101 0 $aeng 181 $ctxt 182 $cc 183 $acr 200 00$aExplosion source phenomenology 210 31$a[Place of publication not identified]$cAmerican Geophysical Union$d1991 225 0 $aGeophysical monograph Explosion source phenomenology 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-87590-031-3 606 $aUnderground nuclear explosions$xCongresses$xDetection 606 $aSeismology$xCongresses 606 $aMilitary & Naval Science$2HILCC 606 $aLaw, Politics & Government$2HILCC 606 $aMilitary Engineering$2HILCC 615 0$aUnderground nuclear explosions$xCongresses$xDetection 615 0$aSeismology$xCongresses 615 7$aMilitary & Naval Science 615 7$aLaw, Politics & Government 615 7$aMilitary Engineering 676 $a623/.737 702 $aRichards$b Paul G 702 $aPatton$b Howard J 702 $aTaylor$b Steven R 801 0$bPQKB 906 $aBOOK 912 $a9910130932903321 996 $aExplosion source phenomenology$92280180 997 $aUNINA LEADER 02074nam 2200373 450 001 9910774883703321 005 20221206172116.0 035 $a(CKB)4100000011569377 035 $a(NjHacI)994100000011569377 035 $a(EXLCZ)994100000011569377 100 $a20201117c2007uuuu uu 0 101 0 $aeng 135 $auubu#---uu|uu 181 $ctxt$2rdacontent 182 $cn$2rdamedia 183 $anc$2rdacarrier 200 00$aModels and analysis of vocal emissions for biomedical applications $e5th International Workshop: December 13-15, 2007, Firenze, Italy /$fedited by Claudia Manfredi 210 1$aFirenze :$cFirenze University Press,$d2007 215 $a1 online resource (252 pages) $cillustrations; digital, PDF file(s) 225 1 $aAtti ;$v33 311 08$aPrint version: 9788884536733 320 $aIncludes bibliographical references and index. 330 $aThe effectiveness of ten different feature sets in classification of voice recordings of the sustained phonation of the vowel sound /a/ into a healthy and pathological classes is investigated as well as a non approach to building a sequential committee of support vector machines (SVM) for the classifications is proposed. The optimal values of hyperparameters of the committee and the feature sets providing the best performance are found during the genetic search. In the experimental investigations performed using 444 voice recordings of the sustained phonation of the vowel sound /a/ coming from 148 subjects, three recordings from each subject, the correct classification rate of over 92 % was obtained. The classification accuracy has been compared with the accuracy obtained from four human experts. 410 0$aAtti ;$v33. 606 $aBiomedical engineering 608 $bElectronic books. 615 0$aBiomedical engineering. 676 $a610.28 702 $aManfredi$b Claudia 801 2$bUkMaJRU 906 $aBOOK 912 $a9910774883703321 996 $aModels and analysis of vocal emissions for biomedical applications$91975141 997 $aUNINA