LEADER 02808nlm0 22007691i 450 001 990009258410403321 010 $a9783540896395 035 $a000925841 035 $aFED01000925841 035 $a(Aleph)000925841FED01 035 $a000925841 100 $a20100926d2008----km-y0itay50------ba 101 0 $aeng 102 $aDE 135 $adrnn-008mamaa 200 1 $aAdvances in Visual Computing$bRisorsa elettronica$e4th International Symposium, ISVC 2008, Las Vegas, NV, USA, December 1-3, 2008. Proceedings, Part I$fedited by David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi, Gerhard Weikum, George Bebis, Richard Boyle, Bahram Parvin, Darko Koracin, Paolo Remagnino, Fatih Porikli, Jörg Peters, James Klosowski, Laura Arns, Yu Ka Chun, Theresa-Marie Rhyne, Laura Monroe 210 $aBerlin ; Heidelberg$cSpringer$d2008 225 1 $aLecture Notes in Computer Science$x0302-9743$v5358 230 $aDocumento elettronico 336 $aTesto 337 $aFormato html, pdf 702 1$aArns,$bLaura 702 1$aBebis,$bGeorge 702 1$aBoyle,$bRichard 702 1$aChun,$bYu Ka 702 1$aHutchison,$bDavid 702 1$aKanade,$bTakeo 702 1$aKittler,$bJosef 702 1$aKleinberg,$bJon M. 702 1$aKlosowski,$bJames 702 1$aKoracin,$bDarko 702 1$aMattern,$bFriedemann 702 1$aMitchell,$bJohn C. 702 1$aMonroe,$bLaura 702 1$aNaor,$bMoni 702 1$aNierstrasz,$bOscar 702 1$aPandu Rangan,$bC. 702 1$aParvin,$bBahram 702 1$aPeters,$bJörg 702 1$aPorikli,$bFatih 702 1$aRemagnino,$bPaolo 702 1$aRhyne,$bTheresa-Marie 702 1$aSteffen,$bBernhard 702 1$aSudan,$bMadhu 702 1$aTerzopoulos,$bDemetri 702 1$aTygar,$bDoug 702 1$aVardi,$bMoshe Y. 702 1$aWeikum,$bGerhard 801 0$aIT$bUNINA$gREICAT$2UNIMARC 856 4 $zFull text per gli utenti Federico II$uhttp://dx.doi.org/10.1007/978-3-540-89639-5 901 $aEB 912 $a990009258410403321 961 $aAlgorithm Analysis and Problem Complexity 961 $aArtificial intelligence 961 $aArtificial Intelligence (incl. Robotics) 961 $aBiometrics 961 $aBiometrics 961 $aComputer graphics 961 $aComputer Graphics 961 $aComputer Science 961 $aComputer software 961 $aComputer vision 961 $aImage Processing and Computer Vision 961 $aOptical pattern recognition 961 $aPattern Recognition 996 $aAdvances in Visual Computing$9772261 997 $aUNINA LEADER 05182nam 2200637 a 450 001 9910130907103321 005 20170810192756.0 010 $a1-283-37055-7 010 $a9786613370556 010 $a3-527-63517-3 010 $a3-527-63518-1 010 $a3-527-63516-5 035 $a(CKB)3460000000000044 035 $a(EBL)700928 035 $a(OCoLC)768731775 035 $a(SSID)ssj0000506307 035 $a(PQKBManifestationID)11355397 035 $a(PQKBTitleCode)TC0000506307 035 $a(PQKBWorkID)10515661 035 $a(PQKB)11002121 035 $a(MiAaPQ)EBC700928 035 $a(EXLCZ)993460000000000044 100 $a20120112d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aBiosensor nanomaterials$b[electronic resource] /$fedited by Songjun Li ... [et al.] 210 $aWeinheim, Germany $cWiley-VCH$d2011 215 $a1 online resource (298 p.) 300 $aDescription based upon print version of record. 311 $a3-527-32841-6 320 $aIncludes bibliographical references and index. 327 $aBiosensor Nanomaterials; Contents; Preface; List of Contributors; 1: New Micro - and Nanotechnologies for Electrochemical Biosensor Development; 1.1 Introduction; 1.2 Carbon Nanotubes; 1.2.1 Carbon Nanotubes Used in Catalytic Biosensors; 1.2.2 Carbon Nanotubes Used in Affinity Biosensors; 1.3 Conductive Polymer Nanostructures; 1.3.1 Conductive Polymer Nanostructures Used in Catalytic Biosensors; 1.3.2 Conductive Polymer Nanostructures Used in Affinity Biosensors; 1.4 Nanoparticles; 1.4.1 Nanoparticles Used in Catalytic Biosensors; 1.4.2 Nanoparticles Used in Affinity Biosensors 327 $a1.5 ConclusionsReferences; 2: Advanced Nanoparticles in Medical Biosensors; 2.1 Introduction; 2.2 Nanoparticles; 2.2.1 Gold Nanoparticles; 2.2.2 Magnetic Nanoparticles; 2.2.3 Quantum Dots; 2.2.4 Silica - Based Nanoparticles; 2.2.5 Dendrimers; 2.2.6 Fullerenes; 2.3 Conclusions and Outlook; References; 3: Smart Polymeric Nanofibers Resolving Biorecognition Issues; 3.1 Introduction; 3.2 Nanofibers; 3.2.1 pH - Sensitive Nanofibers; 3.2.2 Temperature - Responsive Nanofibers; 3.3 Electrospinning of Nanofibers; 3.4 Biorecognition Devices; References 327 $a4: Fabrication and Evaluation of Nanoparticle - Based Biosensors4.1 Introduction; 4.2 Nanoparticle - Based Biosensors and their Fabrication; 4.2.1 Types of Nanobiosensors; 4.2.1.1 Electrochemical Biosensors; 4.2.1.2 Calorimetric Biosensors; 4.2.1.3 Optical Biosensors; 4.2.1.4 Piezoelectric Biosensors; 4.2.2 Fabrication of Biosensors; 4.2.2.1 Immobilization of Biomolecules; 4.2.2.2 Conjugation of Biomolecules and Nanomaterials; 4.2.2.3 Newer Nanobiosensing Technologies; 4.3 Evaluation of Nanoparticle - Based Nanosensors; 4.3.1 Structural Characterization of Nanoparticle - Based Biosensors 327 $a4.3.1.1 Scanning Electron Microscopy4.3.1.2 Transmission Electron Microscopy; 4.3.1.3 Atomic Force Microscopy; 4.3.1.4 X - Ray Diffraction; 4.3.1.5 X - Ray Photoelectron Spectroscopy; 4.3.1.6 UV /Visible Spectroscopy; 4.3.2 Functional Characterization of Nanoparticle - Based Biosensors; 4.3.2.1 Quartz Crystal Microbalance; 4.3.2.2 Ellipsometry; 4.3.2.3 Surface Plasmon Resonance; 4.3.2.4 Cyclic Voltammetry; 4.4 Applications of Nanoparticle - Based Biosensors; 4.5 Conclusions; References; 5: Enzyme - Based Biosensors: Synthesis and Applications; 5.1 Introduction 327 $a5.2 Synthesis and Characterization of Biosensor Supports5.2.1 Carbon Nanotubes; 5.2.1.1 Characterization of Carbon Nanotubes; 5.2.1.2 Application of Carbon Nanotubes as Biosensor Supports; 5.2.2 Nanoparticles for Enzyme Immobilization; 5.2.2.1 General Consideration; 5.2.2.2 Application of Nanoparticles as Biosensor Supports; 5.2.3 Polymer Membranes; 5.3 Application of Enzyme - Based Biosensors; 5.3.1 Environmental Monitoring; 5.3.1.1 Phenolic Derivatives; 5.3.1.2 Pesticides; 5.3.2 Medical Diagnostics; 5.4 Conclusions; Acknowledgments; References 327 $a6: Energy Harvesting for Biosensors Using Biofriendly Materials 330 $aFocusing on the materials suitable for biosensor applications, such as nanoparticles, quantum dots, meso- and nanoporous materials and nanotubes, this text enables the reader to prepare the respective nanomaterials for use in actual devices by appropriate functionalization, surface processing or directed self-assembly. The main detection methods used are electrochemical, optical, and mechanical, providing solutions to challenging tasks.The result is a reference for researchers and developers, disseminating first-hand information on which nanomaterial is best suited to a particular applicat 606 $aNanostructured materials 606 $aBiosensors 608 $aElectronic books. 615 0$aNanostructured materials. 615 0$aBiosensors. 676 $a500 676 $a610.28 701 $aLi$b Songjun$0888300 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910130907103321 996 $aBiosensor nanomaterials$91984537 997 $aUNINA