LEADER 05894nam 2200673 450 001 9910130871403321 005 20170822102514.0 010 $a1-283-37443-9 010 $a9786613374431 010 $a1-118-01954-7 010 $a1-118-01953-9 010 $a1-118-01955-5 035 $a(CKB)3460000000003346 035 $a(EBL)698709 035 $a(OCoLC)714798772 035 $a(SSID)ssj0000477687 035 $a(PQKBManifestationID)11320060 035 $a(PQKBTitleCode)TC0000477687 035 $a(PQKBWorkID)10502414 035 $a(PQKB)11556037 035 $a(MiAaPQ)EBC698709 035 $a(MiAaPQ)EBC4030472 035 $a(EXLCZ)993460000000003346 100 $a20110311h20112011 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aMilitary laser technology for defense $etechnology for revolutionizing 21st century warfare /$fAlastair D. McAulay 210 1$aHoboken, New Jersey :$cWiley,$d[2011] 210 4$dİ2011 215 $a1 online resource (325 p.) 300 $aDescription based upon print version of record. 311 $a0-470-25560-9 320 $aIncludes bibliographical references (pages 289-297) and index. 327 $aMilitary Laser Technology for Defense: Technology for Revolutionizing 21st Century Warfare; CONTENTS; PREFACE; ACKNOWLEDGMENTS; ABOUT THE AUTHOR; PART I: OPTICS TECHNOLOGY FOR DEFENSE SYSTEMS; 1 OPTICAL RAYS; 1.1 PARAXIAL OPTICS; 1.2 GEOMETRIC OR RAY OPTICS; 1.2.1 Fermat's Principle; 1.2.2 Fermat's Principle Proves Snell's Law for Refraction; 1.2.3 Limits of Geometric Optics or Ray Theory; 1.2.4 Fermat's Principle Derives Ray Equation; 1.2.5 Useful Applications of the Ray Equation; 1.2.6 Matrix Representation for Geometric Optics; 1.3 OPTICS FOR LAUNCHING AND RECEIVING BEAMS 327 $a1.3.1 Imaging with a Single Thin Lens1.3.2 Beam Expanders; 1.3.3 Beam Compressors; 1.3.4 Telescopes; 1.3.5 Microscopes; 1.3.6 Spatial Filters; 2 GAUSSIAN BEAMS AND POLARIZATION; 2.1 GAUSSIAN BEAMS; 2.1.1 Description of Gaussian Beams; 2.1.2 Gaussian Beam with ABCD Law; 2.1.3 Forming and Receiving Gaussian Beams with Lenses; 2.2 POLARIZATION; 2.2.1 Wave Plates or Phase Retarders; 2.2.2 Stokes Parameters; 2.2.3 Poincar ?e Sphere; 2.2.4 Finding Point on Poincar ?e Sphere and Elliptical Polarization from Stokes Parameters; 2.2.5 Controlling Polarization; 3 OPTICAL DIFFRACTION 327 $a3.1 INTRODUCTION TO DIFFRACTION3.1.1 Description of Diffraction; 3.1.2 Review of Fourier Transforms; 3.2 UNCERTAINTY PRINCIPLE FOR FOURIER TRANSFORMS; 3.2.1 Uncertainty Principle for Fourier Transforms in Time; 3.2.2 Uncertainty Principle for Fourier Transforms in Space; 3.3 SCALAR DIFFRACTION; 3.3.1 Preliminaries: Green's Function and Theorem; 3.3.2 Field at a Point due to Field on a Boundary; 3.3.3 Diffraction from an Aperture; 3.3.4 Fresnel Approximation; 3.3.5 Fraunhofer Approximation; 3.3.6 Role of Numerical Computation; 3.4 DIFFRACTION-LIMITED IMAGING 327 $a3.4.1 Intuitive Effect of Aperture in Imaging System3.4.2 Computing the Diffraction Effect of a Lens Aperture on Imaging; 4 DIFFRACTIVE OPTICAL ELEMENTS; 4.1 APPLICATIONS OF DOEs; 4.2 DIFFRACTION GRATINGS; 4.2.1 Bending Light with Diffraction Gratings and Grating Equation; 4.2.2 Cosinusoidal Grating; 4.2.3 Performance of Grating; 4.3 ZONE PLATE DESIGN AND SIMULATION; 4.3.1 Appearance and Focusing of Zone Plate; 4.3.2 Zone Plate Computation for Design and Simulation; 4.4 GERCHBERG-SAXTON ALGORITHM FOR DESIGN OF DOEs; 4.4.1 Goal of Gerchberg-Saxton Algorithm 327 $a4.4.2 Inverse Problem for Diffractive Optical Elements4.4.3 Gerchberg-Saxton Algorithm for Forward Computation; 4.4.4 Gerchberg-Saxton Inverse Algorithm for Designing a Phase-Only Filter or DOE; 5 PROPAGATION AND COMPENSATION FOR ATMOSPHERIC TURBULENCE; 5.1 STATISTICS INVOLVED; 5.1.1 Ergodicity; 5.1.2 Locally Homogeneous Random Field Structure Function; 5.1.3 Spatial Power Spectrum of Structure Function; 5.2 OPTICAL TURBULENCE IN THE ATMOSPHERE; 5.2.1 Kolmogorov's Energy Cascade Theory; 5.2.2 Power Spectrum Models for Refractive Index in Optical Turbulence 327 $a5.2.3 Atmospheric Temporal Statistics 330 $a"Lasers in War will provide the basic konwledge to create, design, and implement laser systems for the battlefield, including only unclassified or declassified information. The first three parts of the book provide background material: optics and lasers for war; propagation of laser light in the atmosphere; and propagation of laser light in fiber and optical waveguides. The nest three parts describe military systems involving propagation through the atmosphere: weapons damage systems military systems for information communication; and military systems for sensing. The last part describes military systems involving propagation through optical fiber. This book is timely, as conflicts of late have accelerated progress in military laser system development. Laser weapons are not only effective for directed energy destruction but also for use against personnel by blinding, for countermeasures against heat seeking IR missiles, and for applications in space where communication and GPS satellites need protection. Practical concerns and limits of laser technology will be addressed in each area of application"--$cProvided by publisher. 606 $aLasers$xMilitary applications 606 $aLaser weapons 608 $aElectronic books. 615 0$aLasers$xMilitary applications. 615 0$aLaser weapons. 676 $a623.4/46 676 $a623.446 686 $aTEC019000$2bisacsh 700 $aMcAulay$b Alastair D.$0536331 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910130871403321 996 $aMilitary laser technology for defense$92224369 997 $aUNINA LEADER 01820nam 2200505 450 001 9910827425503321 005 20170918215919.0 010 $a0-8218-9919-8 035 $a(CKB)3360000000464035 035 $a(EBL)3113544 035 $a(SSID)ssj0000976600 035 $a(PQKBManifestationID)11524878 035 $a(PQKBTitleCode)TC0000976600 035 $a(PQKBWorkID)11019967 035 $a(PQKB)10423499 035 $a(MiAaPQ)EBC3113544 035 $a(RPAM)3137033 035 $a(PPN)19541005X 035 $a(EXLCZ)993360000000464035 100 $a20720619d1972 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aTrellis theory /$fby Helen Skala 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d1972. 215 $a1 online resource (49 p.) 225 1 $aMemoirs of the American Mathematical Society ;$vnumber 121 300 $aDescription based upon print version of record. 311 $a0-8218-1821-X 320 $aBibliography: pages 42. 327 $a""Table of Contents""; ""Introduction""; ""Pseudo-ordered Sets""; ""Trellises""; ""Complete Trellises""; ""Transitive and Associative Elements""; ""Distributive Elements""; ""Modular Trellises""; ""Dimension Functions""; ""Geometric Modular Trellises""; ""Boolean Lattices""; ""Mappings""; ""Ideals""; ""Congruence Relations""; ""Trellis Groups""; ""Bibliography"" 410 0$aMemoirs of the American Mathematical Society ;$vno. 121. 606 $aLattice theory 615 0$aLattice theory. 676 $a511/.33 700 $aSkala$b Helen$01627601 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910827425503321 996 $aTrellis theory$93964265 997 $aUNINA LEADER 01430nas 2200469-a 450 001 996217530403316 005 20230227213019.0 011 $a1470-7330 035 $a(DE-599)ZDB2104862-9 035 $a(OCoLC)56362225 035 $a(CKB)111025286559022 035 $a(CONSER)--2004243633 035 $a(EXLCZ)99111025286559022 100 $a20030327a20009999 s-- - 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aCancer imaging $ethe official publication of the International Cancer Imaging Society 210 $aLondon $cE-med$dİ2000]- 300 $aRefereed/Peer-reviewed 300 $aTitle from caption (publisher Web site, viewed Aug. 16, 2004). 311 $a1740-5025 531 $aCANCER IMAGING 531 10$aCancer Imaging 606 $aDiagnostic imaging$vPeriodicals 606 $aNeoplasms$xdiagnosis 606 $aDiagnostic Imaging 606 $aDiagnostic imaging$2fast$3(OCoLC)fst00892354 608 $aPeriodical. 608 $aPeriodicals.$2fast 608 $aPeriodicals.$2lcgft 615 0$aDiagnostic imaging 615 12$aNeoplasms$xdiagnosis. 615 22$aDiagnostic Imaging. 615 7$aDiagnostic imaging. 712 02$aInternational Cancer Imaging Society. 906 $aJOURNAL 912 $a996217530403316 996 $aCancer imaging$92049157 997 $aUNISA