LEADER 05518nam 2200661 a 450 001 9910130601103321 005 20230802003601.0 010 $a1-283-94122-8 010 $a1-118-31019-5 010 $a1-118-31023-3 010 $a1-118-31024-1 035 $a(CKB)3400000000085555 035 $a(EBL)848528 035 $a(OCoLC)823249420 035 $a(SSID)ssj0000702995 035 $a(PQKBManifestationID)11405343 035 $a(PQKBTitleCode)TC0000702995 035 $a(PQKBWorkID)10687032 035 $a(PQKB)10274709 035 $a(MiAaPQ)EBC848528 035 $a(Au-PeEL)EBL848528 035 $a(CaPaEBR)ebr10630497 035 $a(CaONFJC)MIL425372 035 $a(OCoLC)795912948 035 $a(EXLCZ)993400000000085555 100 $a20111115d2012 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aExperimental micro/nanoscale thermal transport$b[electronic resource] /$fXinwei Wang 210 $aHoboken, New Jersey $cWiley$d2012 215 $a1 online resource (280 p.) 300 $aDescription based upon print version of record. 311 $a1-118-00744-1 320 $aIncludes bibliographical references. 327 $aEXPERIMENTAL MICRO/NANOSCALE THERMAL TRANSPORT; CONTENTS; PREFACE; 1 INTRODUCTION; 1.1 Unique Feature of Thermal Transport in Nanoscale and Nanostructured Materials; 1.1.1 Thermal Transport Constrained by Material Size; 1.1.2 Thermal Transport Constrained by Time; 1.1.3 Thermal Transport Constrained by the Size of Physical Process; 1.2 Molecular Dynamics Simulation of Thermal Transport at Micro/Nanoscales; 1.2.1 Equilibrium MD Prediction of Thermal Conductivity; 1.2.2 Nonequilibrium MD Study of Thermal Transport; 1.2.3 MD Study of Thermal Transport Constrained by Time 327 $a1.3 Boltzmann Transportation Equation for Thermal Transport Study1.4 Direct Energy Carrier Relaxation Tracking (DECRT); 1.5 Challenges in Characterizing Thermal Transport at Micro/Nanoscales; References; 2 THERMAL CHARACTERIZATION IN FREQUENCY DOMAIN; 2.1 Frequency Domain Photoacoustic (PA) Technique; 2.1.1 Physical Model; 2.1.2 Experimental Details; 2.1.3 PA Measurement of Films and Bulk Materials; 2.1.4 Uncertainty of the PA Measurement; 2.2 Frequency Domain Photothermal Radiation (PTR) Technique; 2.2.1 Experimental Details of the PTR Technique 327 $a2.2.2 PTR Measurement of Micrometer-Thick Films2.2.3 PTR with Internal Heating of Desired Locations; 2.3 Three-Omega Technique; 2.3.1 Physical Model of the 3u? Technique for One-Dimensional Structures; 2.3.2 Experimental Details; 2.3.3 Calibration of the Experiment; 2.3.4 Measurement of Micrometer-Thick Wires; 2.3.5 Effect of Radiation on Measurement Result; 2.4 Optical Heating Electrical Thermal Sensing (OHETS) Technique; 2.4.1 Experimental Principle and Physical Model; 2.4.2 Effect of Nonuniform Distribution of Laser Beam; 2.4.3 Experimental Details and Calibration 327 $a2.4.4 Measurement of Electrically Conductive Wires2.4.5 Measurement of Nonconductive Wires; 2.4.6 Effect of Au Coating on Measurement; 2.4.7 Temperature Rise in the OHETS Experiment; 2.5 Comparison Among the Techniques; References; 3 TRANSIENT TECHNOLOGIES IN THE TIME DOMAIN; 3.1 Transient Photo-Electro-Thermal (TPET) Technique; 3.1.1 Experimental Principles; 3.1.2 Physical Model Development; 3.1.3 Effect of Nonuniform Distribution and Finite Rising Time of the Laser Beam; 3.1.4 Experimental Setup; 3.1.5 Technique Validation; 3.1.6 Thermal Characterization of SWCNT Bundles and Cloth Fibers 327 $a3.2 Transient Electrothermal (TET) Technique3.2.1 Physical Principles of the TET Technique; 3.2.2 Methods for Data Analysis to Determine the Thermal Diffusivity; 3.2.3 Effect of Nonconstant Electrical Heating; 3.2.4 Experimental Details; 3.2.5 Technique Validation; 3.2.6 Measurement of SWCNT Bundles; 3.2.7 Measurement of Polyester Fibers; 3.2.8 Measurement of Micro/Submicroscale Polyacrylonitrile Wires; 3.3 Pulsed Laser-Assisted Thermal Relaxation Technique; 3.3.1 Experimental Principles; 3.3.2 Physical Model for the PLTR Technique; 3.3.3 Methods to Determine the Thermal Diffusivity 327 $a3.3.4 Experimental Setup and Technique Validation 330 $a"This book covers the new technologies on micro/nanoscale thermal characterization developed in the Micro/Nanoscale Thermal Science Laboratory led by Dr. Xinwei Wang. Five new non-contact and non-destructive technologies are introduced: optical heating and electrical sensing technique, transient electro-thermal technique, transient photo-electro-thermal technique, pulsed laser-assisted thermal relaxation technique, and steady-state electro-Raman-thermal technique. These techniques feature significantly improved ease of implementation, super signal-to-noise ratio, and have the capacity of measuring the thermal conductivity/diffusivity of various one-dimensional structures from dielectric, semiconductive, to metallic materials"--$cProvided by publisher. 606 $aNanostructured materials$xThermal properties 606 $aHeat$xTransmission 615 0$aNanostructured materials$xThermal properties. 615 0$aHeat$xTransmission. 676 $a620.1/1596 686 $aTEC027000$2bisacsh 700 $aWang$b Xinwei$f1948-$0944890 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910130601103321 996 $aExperimental micro$92133210 997 $aUNINA