LEADER 00913nam0-2200325---450- 001 990009577270403321 005 20160913123226.0 010 $a0851862934 035 $a000957727 035 $aFED01000957727 035 $a(Aleph)000957727FED01 035 $a000957727 100 $a20120522d1990----km-y0itay50------ba 101 0 $aeng 102 $aGB 105 $aa-------001yy 200 1 $aSonochemistry$ethe uses of ultrasound in chemistry$fedited T. J. Mason 210 $aCambridge$cRoyal Society of Chemistry$dc1990 215 $aXIII, 157 p.$cill.$d24 cm 610 0 $aUltrasuoni$aUtilizzo in chimica 610 0 $aSonochimica 676 $a543.5 700 1$aMason,$bTimothy J.$0302548 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990009577270403321 952 $a80 X 48 CFT (11)$bCFT 752$fFFABC 959 $aFFABC 996 $aSonochemistry$9846834 997 $aUNINA LEADER 03452nam 22006135 450 001 9910478918503321 005 20200702192255.0 010 $a1-4471-3496-6 024 7 $a10.1007/978-1-4471-3496-1 035 $a(CKB)2660000000026295 035 $a(SSID)ssj0000854934 035 $a(PQKBManifestationID)11477351 035 $a(PQKBTitleCode)TC0000854934 035 $a(PQKBWorkID)10911860 035 $a(PQKB)10304831 035 $a(DE-He213)978-1-4471-3496-1 035 $a(MiAaPQ)EBC3074944 035 $a(PPN)238004279 035 $a(EXLCZ)992660000000026295 100 $a20130220d1998 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aBasic Linear Algebra$b[electronic resource] /$fby Thomas S. Blyth, Edmund F. Robertson 205 $a1st ed. 1998. 210 1$aLondon :$cSpringer London :$cImprint: Springer,$d1998. 215 $a1 online resource (XI, 201 p.) 225 1 $aSpringer Undergraduate Mathematics Series,$x1615-2085 300 $aIncludes index. 311 $a3-540-76122-5 327 $a1. The Algebra of Matrices -- 2. Some Applications of Matrices -- 3. Systems of Linear Equations -- 4. Invertible Matrices -- 5. Vector Spaces -- 6. Linear Mappings -- 7. The Matrix Connection -- 8. Determinants -- 9. Eigenvalues and Eigenvectors -- 10. The Minimum Polynomial -- 11. Solutions to the Exercises. 330 $aBasic Linear Algebra is a text for first year students, working from concrete examples towards abstract theorems, via tutorial-type exercises. The book explains the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations, and complex numbers. Linear equations are treated via Hermite normal forms, which provides a successful and concrete explanation of the notion of linear independence. Another highlight is the connection between linear mappings and matrices, leading to the change of basis theorem which opens the door to the notion of similarity. The authors are well known algebraists with considerable experience of teaching introductory courses on linear algebra to students at St Andrews. This book is based on one previously published by Chapman and Hall, but it has been extensively updated to include further explanatory text and fully worked solutions to the exercises that all 1st year students should be able to answer. 410 0$aSpringer Undergraduate Mathematics Series,$x1615-2085 606 $aAlgebra 606 $aMathematics 606 $aMatrix theory 606 $aAlgebra$3https://scigraph.springernature.com/ontologies/product-market-codes/M11000 606 $aMathematics, general$3https://scigraph.springernature.com/ontologies/product-market-codes/M00009 606 $aLinear and Multilinear Algebras, Matrix Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M11094 615 0$aAlgebra. 615 0$aMathematics. 615 0$aMatrix theory. 615 14$aAlgebra. 615 24$aMathematics, general. 615 24$aLinear and Multilinear Algebras, Matrix Theory. 676 $a512/.5 700 $aBlyth$b Thomas S$4aut$4http://id.loc.gov/vocabulary/relators/aut$0728657 702 $aRobertson$b Edmund F$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910478918503321 996 $aBasic Linear Algebra$91944865 997 $aUNINA LEADER 02636nam2 2200505 i 450 001 VAN00124639 005 20250730110326.692 017 70$2N$a9783319979588 100 $a20191022r19972018 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 181 $ai$b e 182 $ab 183 $acr 200 1 $aˆ1: ‰Distributional and Fractal Calculus, Integral Transforms and Wavelets$fAlexander I. Saichev, Wojbor Woyczynski 205 $a[Reprint of the 1997 edition] 210 $aCham$cBirkhäuser$d2018 215 $axx, 336 p.$cill.$d24 cm 410 1$1001VAN00044485$12001 $aApplied and numerical harmonic analysis$1210 $aBoston [etc.]$cBirkhäuser$d1997- 461 1$1001VAN00124640$12001 $aDistributions in the Physical and Engineering Sciences$fAlexander I. Saichev, Wojbor Woyczynski$1210 $aBoston [etc.]$cBirkhäuser$1215 $avolumi$cill.$d24 cm$v1 500 1$3VAN00236215$aDistributions in the Physical and Engineering Sciences. 1, Distributional and Fractal Calculus, Integral Transforms and Wavelets$92554206 606 $a42-XX$xHarmonic analysis on Euclidean spaces [MSC 2020]$3VANC019851$2MF 606 $a42C40$xNontrigonometric harmonic analysis involving wavelets and other special systems [MSC 2020]$3VANC020271$2MF 606 $a44-XX$xIntegral transforms, operational calculus [MSC 2020]$3VANC022355$2MF 606 $a46-XX$xFunctional analysis [MSC 2020]$3VANC019764$2MF 606 $a46Fxx$xDistributions, generalized functions, distribution spaces [MSC 2020]$3VANC020405$2MF 610 $aCauchy integral$9KW:K 610 $aFourier transform$9KW:K 610 $aHaar wavelet$9KW:K 610 $aSingular integrals$9KW:K 610 $aWavelet transforms$9KW:K 610 $aWavelets$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aSaichev$bAlexander I.$3VANV096082$0344910 701 1$aWoyczynski$bWojbor A.$3VANV044347$0441083 712 $aBirkhäuser $3VANV108193$4650 801 $aIT$bSOL$c20250801$gRICA 856 4 $uhttp://doi.org/10.1007/978-3-319-97958-8$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00124639 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-book 1103 $e08eMF1103 20191022 996 $aDistributions in the Physical and Engineering Sciences. 1, Distributional and Fractal Calculus, Integral Transforms and Wavelets$92554206 997 $aUNICAMPANIA