LEADER 00886nam0-2200325---450- 001 990009531980403321 005 20120227112928.0 010 $a88-420-8056-X 035 $a000953198 035 $aFED01000953198 035 $a(Aleph)000953198FED01 035 $a000953198 100 $a20120222d2006----km-y0itay50------ba 101 0 $aita 102 $aIT 105 $a--------001yy 200 1 $a<>scultura del Novecento$fFrancesco Poli 210 $aRoma ; Bari$cGLF editori Laterza$d2006 215 $aXIII, 228 p.$cill.$d24 cm 225 1 $aGrandi opere 610 0 $aScultura$aSec. 20. 676 $a735.23 700 1$aPoli,$bFrancesco$0215220 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990009531980403321 952 $a735.23 POL 1$bDip.Disc.St.1304$fFLFBC 959 $aFLFBC 996 $aScultura del Novecento$9105306 997 $aUNINA LEADER 02761nam0 22005533i 450 001 VAN0249650 005 20230531101737.677 017 70$2N$a9783030421366 100 $a20220906d2020 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aPolynomial Rings and Affine Algebraic Geometry$ePRAAG 2018, Tokyo, Japan, February 12?16$fShigeru Kuroda, Nobuharu Onoda, Gene Freudenburg editors 210 $aCham$cSpringer$d2020 215 $ax, 315 p.$cill.$d24 cm 410 1$1001VAN0102574$12001 $aSpringer proceedings in mathematics & statistics$1210 $aBerlin [etc.]$cSpringer$v319 500 1$3VAN0249651$aPolynomial Rings and Affine Algebraic Geometry$92209011 606 $a14E07$xBirational automorphisms, Cremona group and generalizations [MSC 2020]$3VANC021509$2MF 606 $a13B25$xPolynomials over commutative rings [MSC 2020]$3VANC022398$2MF 606 $a14L30$xGroup actions on varieties or schemes (quotients) [MSC 2020]$3VANC023128$2MF 606 $a14E25$xEmbeddings in algebraic geometry [MSC 2020]$3VANC023876$2MF 606 $a13A50$xActions of groups on commutative rings; invariant theory [MSC 2020]$3VANC025235$2MF 606 $a13A02$xGraded rings [MSC 2020]$3VANC029352$2MF 606 $a14R20$xGroup actions on affine varieties [MSC 2020]$3VANC031222$2MF 606 $a14J70$xHypersurfaces and algebraic geometry [MSC 2020]$3VANC033751$2MF 606 $a13N15$xDerivations and commutative rings [MSC 2020]$3VANC035161$2MF 610 $aAffine variety$9KW:K 610 $aAutomorphism groups$9KW:K 610 $aGa-action$9KW:K 610 $aJacobian Conjecture$9KW:K 610 $aLocally nilpotent derivation$9KW:K 610 $aLog Kodaira dimension$9KW:K 610 $aMathieu space$9KW:K 610 $aProjective variety$9KW:K 610 $aRational curve$9KW:K 620 $aCH$dCham$3VANL001889 702 1$aFreudenburg$bGene$3VANV095374 702 1$aKuroda$bShigeru$3VANV204157 702 1$aOnoda$bNobuharu$3VANV204158 712 12$aPolynomial Rings and Affine Algebraic Geometry Conference$f2018$eTokyo, Japan$3VANV204159 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttp://doi.org/10.1007/978-3-030-42136-6$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN0249650 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book 4794 $e08eMF4794 20220906 996 $aPolynomial Rings and Affine Algebraic Geometry$92209011 997 $aUNICAMPANIA