LEADER 00892nam0-2200277---450- 001 990009187060403321 005 20100519104211.0 035 $a000918706 035 $aFED01000918706 035 $a(Aleph)000918706FED01 035 $a000918706 100 $a20100519d1979----km-y0itay50------ba 101 0 $aeng 105 $aa-------001yy 200 1 $aAllocating costs and benefits in disease prevention programs$ean applications to cervical cancer screening$fBrian Rogers Luce 210 $aAnn Arbor$cUniversity microfilms international$d1979 215 $aXV, 111 p.$cill.$d21 cm 610 0 $aCancro 700 1$aLuce,$bBrian Rogers$0507902 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990009187060403321 952 $aIG 16 H 03$b2108$fDMIGI 959 $aDMIGI 996 $aAllocating costs and benefits in disease prevention programs$9775938 997 $aUNINA LEADER 05383nam 22013935 450 001 9910154743503321 005 20190708092533.0 010 $a1-4008-8168-4 024 7 $a10.1515/9781400881680 035 $a(CKB)3710000000631382 035 $a(SSID)ssj0001651330 035 $a(PQKBManifestationID)16426278 035 $a(PQKBTitleCode)TC0001651330 035 $a(PQKBWorkID)12661656 035 $a(PQKB)11031146 035 $a(MiAaPQ)EBC4738551 035 $a(DE-B1597)467914 035 $a(OCoLC)979633757 035 $a(DE-B1597)9781400881680 035 $a(EXLCZ)993710000000631382 100 $a20190708d2016 fg 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aSmoothings of Piecewise Linear Manifolds. (AM-80), Volume 80 /$fMorris W. Hirsch, Barry Mazur 210 1$aPrinceton, NJ : $cPrinceton University Press, $d[2016] 210 4$dİ1975 215 $a1 online resource (149 pages) 225 0 $aAnnals of Mathematics Studies ;$v269 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-691-08145-X 320 $aIncludes bibliographical references. 327 $tFrontmatter -- $tPREFACE -- $tREFERENCES -- $tCONTENTS -- $tSMOOTHINGS OF PIECEWISE LINEAR MANIFOLDS I: PRODUCTS / $rHirsch, Morris W. -- $tSMOOTHINGS OF PIECEWISE LINEAR MANIFOLDS II: CLASSIFICATION / $rHirsch, Morris W. / Mazur, Barry -- $tBIBLIOGRAPHY -- $tBackmatter 330 $aThe intention of the authors is to examine the relationship between piecewise linear structure and differential structure: a relationship, they assert, that can be understood as a homotopy obstruction theory, and, hence, can be studied by using the traditional techniques of algebraic topology.Thus the book attacks the problem of existence and classification (up to isotopy) of differential structures compatible with a given combinatorial structure on a manifold. The problem is completely "solved" in the sense that it is reduced to standard problems of algebraic topology.The first part of the book is purely geometrical; it proves that every smoothing of the product of a manifold M and an interval is derived from an essentially unique smoothing of M. In the second part this result is used to translate the classification of smoothings into the problem of putting a linear structure on the tangent microbundle of M. This in turn is converted to the homotopy problem of classifying maps from M into a certain space PL/O. The set of equivalence classes of smoothings on M is given a natural abelian group structure. 410 0$aAnnals of mathematics studies ;$vNumber 80. 606 $aPiecewise linear topology 606 $aManifolds (Mathematics) 610 $aAffine transformation. 610 $aApproximation. 610 $aAssociative property. 610 $aBijection. 610 $aBundle map. 610 $aClassification theorem. 610 $aCodimension. 610 $aCoefficient. 610 $aCohomology. 610 $aCommutative property. 610 $aComputation. 610 $aConvex cone. 610 $aConvolution. 610 $aCorollary. 610 $aCounterexample. 610 $aDiffeomorphism. 610 $aDifferentiable function. 610 $aDifferentiable manifold. 610 $aDifferential structure. 610 $aDimension. 610 $aDirect proof. 610 $aDivision by zero. 610 $aEmbedding. 610 $aEmpty set. 610 $aEquivalence class. 610 $aEquivalence relation. 610 $aEuclidean space. 610 $aExistential quantification. 610 $aExponential map (Lie theory). 610 $aFiber bundle. 610 $aFibration. 610 $aFunctor. 610 $aGrassmannian. 610 $aH-space. 610 $aHomeomorphism. 610 $aHomotopy. 610 $aIntegral curve. 610 $aInverse problem. 610 $aIsomorphism class. 610 $aK0. 610 $aLinearization. 610 $aManifold. 610 $aMathematical induction. 610 $aMilnor conjecture. 610 $aNatural transformation. 610 $aNeighbourhood (mathematics). 610 $aNormal bundle. 610 $aObstruction theory. 610 $aOpen set. 610 $aPartition of unity. 610 $aPiecewise linear. 610 $aPolyhedron. 610 $aReflexive relation. 610 $aRegular map (graph theory). 610 $aSheaf (mathematics). 610 $aSmoothing. 610 $aSmoothness. 610 $aSpecial case. 610 $aSubmanifold. 610 $aTangent bundle. 610 $aTangent vector. 610 $aTheorem. 610 $aTopological manifold. 610 $aTopological space. 610 $aTopology. 610 $aTransition function. 610 $aTransitive relation. 610 $aVector bundle. 610 $aVector field. 615 0$aPiecewise linear topology. 615 0$aManifolds (Mathematics) 676 $a514/.224 700 $aHirsch$b Morris W., $013761 702 $aMazur$b Barry, 801 0$bDE-B1597 801 1$bDE-B1597 906 $aBOOK 912 $a9910154743503321 996 $aSmoothings of Piecewise Linear Manifolds. (AM-80), Volume 80$92839521 997 $aUNINA