LEADER 01005nam0-2200325---450- 001 990008785150403321 005 20090625171825.0 010 $a0-306-30577-1 035 $a000878515 035 $aFED01000878515 035 $a(Aleph)000878515FED01 035 $a000878515 100 $a20081223d1973----km-y0itay50------ba 101 1 $aeng 102 $aUS 105 $aa-------001yy 200 1 $a<>primary structure of transfer RNA$fby T.V. Venkstern$gtranslation editor James T. Madison 210 $aNew York$cPlenum Press$d1973 215 $ax, 296 p.$cill.$d24 cm 300 $aTranslation of Pervichnaia struktura transportnykh ribonukleinovykh kislot. 676 $a574.8$v19 700 1$aVenkstern,$bTat'iàna Vladimirovna$0432297 702 1$aMadison,$bJames T. 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990008785150403321 952 $aC 8b 2$b765/CB1$fDMBBM 959 $aDMBBM 996 $aPrimary structure of transfer RNA$9809199 997 $aUNINA LEADER 02399nam0 2200457 i 450 001 VAN0113685 005 20230705112553.499 017 70$2N$a9783319209975 100 $a20180117d2015 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aEvolution equations of von Karman type$fPascal Cherrier, Albert Milani 210 $a[Cham]$cSpringer$cUnione matematica italiana$d2015 215 $aXVI, 140 p.$d24 cm 410 1$1001VAN0062328$12001 $aLecture notes of the Unione Matematica Italiana$1210 $aBerlin [etc.]$cSpringer$v17 500 1$3VAN0234996$aEvolution equations of von Karman type$91522726 606 $a58E05$xAbstract critical point theory (Morse theory, Lyusternik-Shnirel'man theory, etc.) in infinite-dimensional spaces [MSC 2020]$3VANC023131$2MF 606 $a53Zxx$xApplications of differential geometry to sciences and engineering [MSC 2020]$3VANC023358$2MF 606 $a53D05$xSymplectic manifolds, general [MSC 2020]$3VANC023410$2MF 606 $a35F21$xHamilton-Jacobi equations [MSC 2020]$3VANC029004$2MF 606 $a53D12$xLagrangian submanifolds; Maslov index [MSC 2020]$3VANC033741$2MF 606 $a37J06$xGeneral theory of finite-dimensional Hamiltonian and Lagrangian systems, Hamiltonian and Lagrangian structures, symmetries, invariants [MSC 2020]$3VANC033742$2MF 610 $aLocal and global solutions$9KW:K 610 $aNonlinear evolution equations$9KW:K 610 $aPartial differential equations$9KW:K 610 $aVon Karman equations$9KW:K 610 $aWeak and strong solutions$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aCherrier$bPascal$3VANV087782$0477813 702 1$aMilani$bAlbert$3VANV087783 712 $aSpringer $3VANV108073$4650 712 $aUnione matematica italiana$3VANV109169$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttp://dx.doi.org/10.1007/978-3-319-20997-5$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN0113685 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book 0188 $e08eMF188 20180117 996 $aEvolution equations of von Karman type$91522726 997 $aUNICAMPANIA LEADER 01184nam2 2200301 i 450 001 VAN00012501 005 20240806100252.707 010 $a88-13-18797-1 020 $aIT$b95 366 100 $a20030206d1994 |0itac50 ba 101 $aita 102 $aIT 105 $a|||| ||||| 200 1 $aˆ18: Le ‰garanzie bancarie$fMirella Viale 210 $aPadova$cCEDAM$d1994 215 $aXIV, 280 p.$d25 cm. 461 1$1001VAN00000012$12001 $aTrattato di diritto commerciale e di diritto pubblico dell'economia$fdiretto da Francesco Galgano$1210 $aPadova$cCedam$1215 $avolumi$d25 cm.$v18 606 $aCredito bancario$xGaranzie$3VANC005852$2FI 620 $dPadova$3VANL000007 676 $a346.45073$v21 700 1$aViale$bMirella$3VANV009296$0234458 712 $aCEDAM $3VANV111515$4650 801 $aIT$bSOL$c20250131$gRICA 899 $aBIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$1IT-CE0105$2VAN00 912 $aVAN00012501 950 $aBIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$d00CONS VI.D.23 18 $e00 16483 20030206 $sBuono 996 $aGaranzie bancarie$9208000 997 $aUNICAMPANIA