LEADER 01003nam0-22003491--450- 001 990008682530403321 005 20130415152310.0 035 $a000868253 035 $aFED01000868253 035 $a(Aleph)000868253FED01 035 $a000868253 100 $a20080701d1932----km-y0itay50------ba 101 0 $aita 102 $aIT 105 $ay-------001yy 200 1 $aColloqui con Mussolini$fEmili Ludwig$gtraduzione di Tommaso Gnoli 210 $aMilano$cMondadori$dstampa 1932 215 $a221 p.$d21 cm 225 1 $aTutte le opere di Emilio Ludwig 676 $a945.091 092$v19$zita 700 1$aLudwig,$bEmil$f<1881-1948>$026900 702 1$aMussolini,$bBenito$f<1883-1945> 702 1$aGnoli,$bTommaso$f<1874-1958> 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990008682530403321 952 $aXIV B 1002$b6919$fFSPBC 952 $aSDI-XVIII B 5$bs.i.$fSDI 959 $aSDI 959 $aFSPBC 996 $aColloqui con Mussolini$9716698 997 $aUNINA LEADER 02942nam 2200613 450 001 9910809698903321 005 20230617005612.0 010 $a1-383-04158-X 010 $a1-280-75519-9 010 $a9786610755196 010 $a0-19-155675-0 010 $a1-4237-5329-1 035 $a(CKB)1000000000460177 035 $a(MH)009519019-8 035 $a(SSID)ssj0000203135 035 $a(PQKBManifestationID)12066607 035 $a(PQKBTitleCode)TC0000203135 035 $a(PQKBWorkID)10258536 035 $a(PQKB)10816088 035 $a(Au-PeEL)EBL4963436 035 $a(CaONFJC)MIL75519 035 $a(OCoLC)1027140598 035 $a(MiAaPQ)EBC5602472 035 $a(EXLCZ)991000000000460177 100 $a20181219d2004 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aMind and emergence $efrom quantum to consciousness /$fPhilip Clayton 205 $a1st ed. 210 1$aOxford ;$aNew York :$cOxford University Press,$d2004. 215 $a1 online resource (x, 236 p. )$cill. ; 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-19-929143-8 311 $a0-19-927252-2 320 $aIncludes bibliographical references (p. [214]-229) and index. 327 $aFrom reduction to emergence -- Defining emergence -- Emergence in the natural sciences -- Emergence and mind -- Emergence and transcendence. 330 $aStrong claims have been made for emergence as a new paradigm for understanding science, consciousness, and religion. Tracing the past history and current definitions of the concept, Clayton assesses the case for emergent phenomena in the natural world and their significance for philosophy and theology. Complex emergent phenomena require irreducible levels of explanation in physics, chemistry and biology. This pattern of emergence suggests a new approach to the problem of consciousness, which is neither reducible to brain states nor proof of a mental substance or soul. Although emergence does not entail classical theism, it is compatible with a variety of religious positions. Clayton concludes with a defence of emergentist panentheism and a Christian constructive theology consistent with the new sciences of emergence. 606 $aPhilosophical theology 606 $aPhilosophy of mind 615 0$aPhilosophical theology. 615 0$aPhilosophy of mind. 676 $a128/.2 700 $aClayton$b Philip$f1956-$0943068 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910809698903321 996 $aMind and emergence$94097930 997 $aUNINA 999 $aThis Record contains information from the Harvard Library Bibliographic Dataset, which is provided by the Harvard Library under its Bibliographic Dataset Use Terms and includes data made available by, among others the Library of Congress LEADER 07398nam 2202185z- 450 001 9910557503803321 005 20210501 035 $a(CKB)5400000000044518 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/68408 035 $a(oapen)doab68408 035 $a(EXLCZ)995400000000044518 100 $a20202105d2021 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aEngineering Fluid Dynamics 2019-2020 210 $aBasel, Switzerland$cMDPI - Multidisciplinary Digital Publishing Institute$d2021 215 $a1 online resource (384 p.) 311 08$a3-0365-0214-9 311 08$a3-0365-0215-7 330 $aThis book contains the successful submissions to a Special Issue of Energies entitled "Engineering Fluid Dynamics 2019-2020". The topic of engineering fluid dynamics includes both experimental and computational studies. Of special interest were submissions from the fields of mechanical, chemical, marine, safety, and energy engineering. We welcomed original research articles and review articles. After one-and-a-half years, 59 papers were submitted and 31 were accepted for publication. The average processing time was about 41 days. The authors had the following geographical distribution: China (15); Korea (7); Japan (3); Norway (2); Sweden (2); Vietnam (2); Australia (1); Denmark (1); Germany (1); Mexico (1); Poland (1); Saudi Arabia (1); USA (1); Serbia (1). Papers covered a wide range of topics including analysis of free-surface waves, bridge girders, gear boxes, hills, radiation heat transfer, spillways, turbulent flames, pipe flow, open channels, jets, combustion chambers, welding, sprinkler, slug flow, turbines, thermoelectric power generation, airfoils, bed formation, fires in tunnels, shell-and-tube heat exchangers, and pumps. 606 $aHistory of engineering and technology$2bicssc 610 $a3D hill 610 $aaccelerators 610 $aaerodynamics 610 $aanisotropic scattering 610 $aaspect ratio 610 $aautomotive 610 $abaffle 610 $aBetz 610 $ablocked-off-region procedure 610 $aboundary layer 610 $acanopy 610 $aCFD 610 $aCH2O 610 $achurning power losses 610 $aclamping 610 $aclimate change 610 $acoherent structures 610 $acombustion 610 $acomputational fluid dynamics (CFD) 610 $acomputational fluid dynamics (CFD), multiphysics 610 $acontrol 610 $acylinder 610 $adeep neural network 610 $adilution 610 $adiscrete element method, sedimentation, bed formation 610 $adistribution 610 $adynamic motion 610 $aenergy dissipation rates 610 $aenergy efficiency 610 $aevacuation 610 $aexperimental validation 610 $aextinguishing coefficient 610 $afire dynamics simulator (FDS) 610 $afire growth rate index 610 $afire risk 610 $afire spread rate 610 $afire suppression 610 $aflow fields 610 $afree surface waves 610 $afreestream theory 610 $agap resonance 610 $agearbox 610 $agenetic algorithms 610 $aground roughness 610 $aheat exchanger 610 $aheat recuperation 610 $aheat release rate 610 $aheat transfer 610 $ahill shape 610 $ahill slope 610 $ahorizontal face angle 610 $ahorizontal pipe 610 $ahybrid simulation method 610 $ahydraulic characteristics 610 $ahydrodynamic forces 610 $aignition heat source 610 $aimpinging height 610 $aimpinging water jet 610 $ainner smoke force 610 $ainstability 610 $ainteraction between smoke and evacuees 610 $ajet fan speed 610 $alarge eddy simulations (LES) 610 $alarge-eddy simulations 610 $aLedaFlow 610 $aliquid holdup 610 $aLSMs 610 $amaldistribution 610 $amaximum heat release rate 610 $amie particles 610 $amodified BR-smoke model 610 $amulti-fluid model 610 $amultiphase flow 610 $anon-inertial coordinate system 610 $anumerical calculation 610 $anumerical investigation 610 $anumerical simulation 610 $aOH 610 $aoptimized 610 $aoptimized design 610 $aorgan-Helmholtz nozzle 610 $aorifice shape 610 $aorthogonal test 610 $aparticle heat transfer 610 $apipe insulation 610 $aPIV 610 $aplanar laser-induced fluorescence 610 $apneumatics 610 $apower extraction 610 $apre-multiplied wind velocity spectrum 610 $apremixed 610 $apressure fluctuation 610 $apressure gradient 610 $apressure pulsation amplitude 610 $apulse waterjet 610 $aradial force 610 $aradiant heat flux 610 $aradiation 610 $arecirculation 610 $arenewable energy 610 $ariser-induced slug flow 610 $arotor stator interaction 610 $aroughness 610 $ascale factor 610 $asecondary vortex 610 $aself-excited oscillation jet 610 $aseparation distance 610 $ashell side 610 $ashell-and-tube 610 $ashield arc metal welding 610 $asmoke layer thickness 610 $asmoke logging 610 $asmoke movement 610 $asmoke spread 610 $asmoke stratification 610 $aspatial correlation coefficient field 610 $asplash lubrication 610 $asplitter blades 610 $asprinkler 610 $astability 610 $astepped spillway 610 $asubmerged jet 610 $asurrogate model 610 $aswirler 610 $athermoelectricity 610 $atime to reach maximum HRR (heat release rate) 610 $atraditional market 610 $atube bundle 610 $atunnel fires 610 $aturbines 610 $aturbulent boundary flow 610 $aturbulent boundary layer 610 $aturbulent flame 610 $aturbulent flow fields 610 $aturbulent structure 610 $atwin H-rotor vertical-axis turbines 610 $atwin-box deck 610 $atwo-phase flow 610 $aultra-low specific speed magnetic drive pump 610 $aunsteady flow 610 $aunsteady RANS simulation 610 $aURANS 610 $avelocity ratio 610 $avertical jet 610 $avisibility 610 $aVLSMs 610 $aVOF-model 610 $avolume fraction 610 $avortex shedding 610 $awake 610 $awavelet transform 610 $awelding spatter 610 $awind power 610 $aWMLES 615 7$aHistory of engineering and technology 700 $aHjertager$b Bjørn$4edt$01282500 702 $aHjertager$b Bjørn$4oth 906 $aBOOK 912 $a9910557503803321 996 $aEngineering Fluid Dynamics 2019-2020$93018832 997 $aUNINA