LEADER 00829nam0-2200301---450- 001 990008656410403321 005 20080508102429.0 010 $a0-80-024261-8 035 $a000865641 035 $aFED01000865641 035 $a(Aleph)000865641FED01 035 $a000865641 100 $a20080508d1979----km-y0itay50------ba 101 0 $aeng 102 $aGB 105 $aa-------001yy 200 1 $aHydrology$ean advanced introduction to hydrological processes and modelling$fArved J. Raudkivi 210 $aOxford$cPergamon$d1979 215 $aIX, 479 p.$cill.$d24 cm 610 0 $aIdrologia 700 1$aRaudkivi,$bArved J.$015375 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990008656410403321 952 $aGM1 M II 27$b65057$fGM1 959 $aGM1 996 $aHydrology$9715280 997 $aUNINA LEADER 03852nam 22007095 450 001 996466505503316 005 20200702174710.0 010 $a3-540-44971-X 024 7 $a10.1007/BFb0104102 035 $a(CKB)1000000000437273 035 $a(SSID)ssj0000325480 035 $a(PQKBManifestationID)12069573 035 $a(PQKBTitleCode)TC0000325480 035 $a(PQKBWorkID)10323991 035 $a(PQKB)11660567 035 $a(DE-He213)978-3-540-44971-3 035 $a(MiAaPQ)EBC6297073 035 $a(MiAaPQ)EBC5591224 035 $a(Au-PeEL)EBL5591224 035 $a(OCoLC)1066188018 035 $a(PPN)155164457 035 $a(EXLCZ)991000000000437273 100 $a20121227d2000 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aOscillatory Integrals and Phenomena Beyond all Algebraic Orders$b[electronic resource] $ewith Applications to Homoclinic Orbits in Reversible Systems /$fby Eric Lombardi 205 $a1st ed. 2000. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2000. 215 $a1 online resource (XVIII, 418 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1741 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-67785-2 320 $aIncludes bibliographical references (pages [405]-410) and index. 327 $a"Exponential tools" for evaluating oscillatory integrals -- Resonances of reversible vector fields -- Analytic description of periodic orbits bifurcating from a pair of simple purely imaginary eigenvalues -- Constructive floquet theory for periodic matrices near a constant one -- Inversion of affine equations around reversible homoclinic connections -- The 02+i? resonance -- The 02+i? resonance in infinite dimensions. Application to water waves -- The (i?0)2i?1 resonance. 330 $aDuring the last two decades, in several branches of science (water waves, crystal growth, travelling waves in one dimensional lattices, splitting of separatrices,...) different problems appeared in which the key point is the computation of exponentially small terms. This self-contained monograph gives new and rigorous mathematical tools which enable a systematic study of such problems. Starting with elementary illuminating examples, the book contains (i) new asymptotical tools for obtaining exponentially small equivalents of oscillatory integrals involving solutions of nonlinear differential equations; (ii) implementation of these tools for solving old open problems of bifurcation theory such as existence of homoclinic connections near resonances in reversible systems. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1741 606 $aMathematical analysis 606 $aAnalysis (Mathematics) 606 $aStatistical physics 606 $aDynamical systems 606 $aAnalysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12007 606 $aComplex Systems$3https://scigraph.springernature.com/ontologies/product-market-codes/P33000 606 $aStatistical Physics and Dynamical Systems$3https://scigraph.springernature.com/ontologies/product-market-codes/P19090 615 0$aMathematical analysis. 615 0$aAnalysis (Mathematics). 615 0$aStatistical physics. 615 0$aDynamical systems. 615 14$aAnalysis. 615 24$aComplex Systems. 615 24$aStatistical Physics and Dynamical Systems. 676 $a515.35 700 $aLombardi$b Eric$4aut$4http://id.loc.gov/vocabulary/relators/aut$063016 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466505503316 996 $aOscillatory integrals and phenomena beyond all algebraic orders$978810 997 $aUNISA