LEADER 01047nam0-22002891--450- 001 990008308000403321 005 20060405121025.0 035 $a000830800 035 $aFED01000830800 035 $a(Aleph)000830800FED01 035 $a000830800 100 $a20060405d1932----km-y0itay50------ba 101 0 $aita 102 $aIT 105 $ay---n---001yy 200 1 $aRelazione sull'amministrazione delle dogane e imposte indirette per il periodo dal 1927-28 al 1929-30$fMinistero delle finanze, Direzione generale delle dogane e delle imposte indirette 210 $aRoma$cIst. Poligrafico dello Stato$d1932 215 $aXVII, 271 p.$d31 cm 676 $a343.05$v20$zita 710 01$aItalia.$bDirezione generale delle dogane e delle imposte indirette$03446 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990008308000403321 952 $aXIV C 127$b1907$fFGBC 959 $aFGBC 996 $aRelazione sull'amministrazione delle dogane e imposte indirette per il periodo dal 1927-28 al 1929-30$9745631 997 $aUNINA LEADER 00879nam a2200253 i 4500 001 991001042529707536 005 20020507105552.0 008 940308s1967 us ||| | eng 035 $ab1016540x-39ule_inst 035 $aLE00641170$9ExL 040 $aDip.to Fisica$bita 084 $a53(076) 084 $a53.1.32 100 1 $aWells, Dare A.$029943 245 10$aLagrangian dynamics :$bincluding 275 solved problems /$cDare A. Wells 260 $aNew York :$bSchaum Publishing Co.,$cc1967 300 $a353 p. ;$c27 cm. 490 0 $aSchaum's outline series 907 $a.b1016540x$b17-02-17$c27-06-02 912 $a991001042529707536 945 $aLE006 53(022+076) SCH$g1$i2006000001854$lle006$o-$pE0.00$q-$rl$s- $t0$u2$v0$w2$x0$y.i10201671$z27-06-02 996 $aLagrangian dynamics$9188065 997 $aUNISALENTO 998 $ale006$b01-01-94$cm$da $e-$feng$gus $h0$i1 LEADER 03875oam 22007574 450 001 9910788348303321 005 20230721045657.0 010 $a1-4623-3560-8 010 $a1-4527-9750-1 010 $a9786612842467 010 $a1-4518-7171-6 010 $a1-282-84246-3 035 $a(CKB)3170000000055188 035 $a(EBL)1608154 035 $a(SSID)ssj0000940078 035 $a(PQKBManifestationID)11512680 035 $a(PQKBTitleCode)TC0000940078 035 $a(PQKBWorkID)10939141 035 $a(PQKB)10244986 035 $a(OCoLC)680613607 035 $a(MiAaPQ)EBC1608154 035 $a(IMF)WPIEE2009024 035 $a(EXLCZ)993170000000055188 100 $a20020129d2009 uf 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aCan Markets Compute Equilibria? /$fHunter Monroe 210 1$aWashington, D.C. :$cInternational Monetary Fund,$d2009. 215 $a1 online resource (22 p.) 225 1 $aIMF Working Papers 300 $aDescription based upon print version of record. 311 $a1-4519-1607-8 320 $aIncludes bibliographical references. 327 $aContents; I. Introduction; II. Is Computing Equilibria Difficult?; Table; 1. Payoff Matrix for the Prisoner's Dilemma; Figures; 1. NP-complete: Is there a Hamilton Cycle?; 2. P: Is this a Hamilton Cycle?; III. Are There Natural Problems with No Best Algorithm?; A. Superlinear vs. Blum Speedup; B. No Best Algorithm for Integer and Matrix Multiplication?; 3. Boolean circuit: Are at least two inputs "TRUE"?; C. The Power of Cancellation; D. No Best Algorithm for coNP-Complete Problems?; E. No Best Algorithm Versus No Algorithm at All; IV. Conclusion; 4. Is speedup inherited?; References 330 3 $aRecent turmoil in financial and commodities markets has renewed questions regarding how well markets discover equilibrium prices, particularly when those markets are highly complex. A relatively new critique questions whether markets can realistically find equilibrium prices if computers cannot. For instance, in a simple exchange economy with Leontief preferences, the time required to compute equilibrium prices using the fastest known techniques is an exponential function of the number of goods. Furthermore, no efficient technique for this problem exists if a famous mathematical conjecture is correct. The conjecture states loosely that there are some problems for which finding an answer (i.e., an equilibrium price vector) is hard even though it is easy to check an answer (i.e., that a given price vector is an equilibrium). This paper provides a brief overview of computational complexity accessible to economists, and points out that the existence of computational problems with no best solution algorithm is relevant to this conjecture. 410 0$aIMF Working Papers; Working Paper ;$vNo. 2009/024 606 $aComputational complexity 606 $aElectronic data processing 606 $aMacroeconomics$2imf 606 $aNoncooperative Games$2imf 606 $aMicroeconomic Behavior: Underlying Principles$2imf 606 $aPrice Level$2imf 606 $aInflation$2imf 606 $aDeflation$2imf 606 $aAsset prices$2imf 606 $aPrices$2imf 615 0$aComputational complexity. 615 0$aElectronic data processing. 615 7$aMacroeconomics 615 7$aNoncooperative Games 615 7$aMicroeconomic Behavior: Underlying Principles 615 7$aPrice Level 615 7$aInflation 615 7$aDeflation 615 7$aAsset prices 615 7$aPrices 700 $aMonroe$b Hunter$01472700 712 02$aInternational Monetary Fund. 801 0$bDcWaIMF 906 $aBOOK 912 $a9910788348303321 996 $aCan Markets Compute Equilibria$93716534 997 $aUNINA