LEADER 00841nam0-2200301---450 001 990008276630403321 005 20190905112255.0 010 $a88-8372-288-4 035 $a000827663 035 $aFED01000827663 035 $a(Aleph)000827663FED01 035 $a000827663 100 $a20060217d2005----km-y0itay50------ba 101 0 $aita 102 $aIT 105 $a--------001y- 200 1 $aAlla scoperta dell'uomo$ebrevi saggi sull'uomo e l'ambiente$fPiergiacomo Pagano 210 $aBologna$cA. Perdisa$dc2005 610 0 $aEcologia umana 676 $a304.2$v20$zita 700 1$aPagano,$bPiergiacomo$0291081 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990008276630403321 952 $a60 304.2 PAGP 2005$b10231$fFAGBC 959 $aFAGBC 996 $aAlla scoperta dell'uomo$9741727 997 $aUNINA LEADER 01209nam a2200361 i 4500 001 991002739199707536 008 070801s2007 riu b 001 0 eng d 020 $a0821842420 024 3 $a9780821842423 035 $ab13572830-39ule_inst 040 $aDip.to Matematica$beng 082 04$a512.55$222 084 $aAMS 46L55 084 $aAMS 46L05 084 $aAMS 22D25 084 $aAMS 22D30 084 $aAMS 46L45 084 $aAMS 54H15 084 $aLC QA326.W55 100 1 $aWilliams, Dana P.$062165 245 10$aCrossed products of C*-algebras /$cDana P. Williams 260 $aProvidence, RI :$bAmerican Mathematical Society,$cc2007 300 $axvi, 528 p. ;$c26 cm 440 0$aMathematical surveys and monographs,$x0076-5376 ;$v134 504 $aIncludes bibliographical references (p. 521-528) and indexes 650 0$aC*-algebras 650 0$aOperator algebras 907 $a.b13572830$b28-01-14$c01-08-07 912 $a991002739199707536 945 $aLE013 46L WIL11 (2007)$g1$i2013000206127$lle013$op$pE91.96$q-$rl$s- $t0$u0$v0$w0$x0$y.i14566382$z27-09-07 996 $a-algebras$93369891 997 $aUNISALENTO 998 $ale013$b01-08-07$cm$da $e-$feng$griu$h0$i0 LEADER 03547nam 22006495 450 001 9910144943803321 005 20200705181454.0 010 $a3-540-45872-7 024 7 $a10.1007/b83278 035 $a(CKB)1000000000233249 035 $a(SSID)ssj0000321682 035 $a(PQKBManifestationID)11235573 035 $a(PQKBTitleCode)TC0000321682 035 $a(PQKBWorkID)10280794 035 $a(PQKB)10389145 035 $a(DE-He213)978-3-540-45872-2 035 $a(MiAaPQ)EBC6295273 035 $a(MiAaPQ)EBC5585998 035 $a(Au-PeEL)EBL5585998 035 $a(OCoLC)1066184567 035 $a(PPN)155219197 035 $a(EXLCZ)991000000000233249 100 $a20121227d2002 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aBorcherds Products on O(2,l) and Chern Classes of Heegner Divisors /$fby Jan H. Bruinier 205 $a1st ed. 2002. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2002. 215 $a1 online resource (VIII, 156 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1780 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-43320-1 327 $aIntroduction -- Vector valued modular forms for the metaplectic group. The Weil representation. Poincaré series and Einstein series. Non-holomorphic Poincaré series of negative weight -- The regularized theta lift. Siegel theta functions. The theta integral. Unfolding against F. Unfolding against theta -- The Fourier theta lift. Lorentzian lattices. Lattices of signature (2,l). Modular forms on orthogonal groups. Borcherds products -- Some Riemann geometry on O(2,l). The invariant Laplacian. Reduction theory and L^p-estimates. Modular forms with zeros and poles on Heegner divisors -- Chern classes of Heegner divisors. A lifting into cohomology. Modular forms with zeros and poles on Heegner divisors II. 330 $aAround 1994 R. Borcherds discovered a new type of meromorphic modular form on the orthogonal group $O(2,n)$. These "Borcherds products" have infinite product expansions analogous to the Dedekind eta-function. They arise as multiplicative liftings of elliptic modular forms on $(SL)_2(R)$. The fact that the zeros and poles of Borcherds products are explicitly given in terms of Heegner divisors makes them interesting for geometric and arithmetic applications. In the present text the Borcherds' construction is extended to Maass wave forms and is used to study the Chern classes of Heegner divisors. A converse theorem for the lifting is proved. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1780 606 $aAlgebra 606 $aField theory (Physics) 606 $aGeometry, Algebraic 606 $aField Theory and Polynomials$3https://scigraph.springernature.com/ontologies/product-market-codes/M11051 606 $aAlgebraic Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M11019 615 0$aAlgebra. 615 0$aField theory (Physics) 615 0$aGeometry, Algebraic. 615 14$aField Theory and Polynomials. 615 24$aAlgebraic Geometry. 676 $a512.73 700 $aBruinier$b Jan H$4aut$4http://id.loc.gov/vocabulary/relators/aut$066735 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910144943803321 996 $aBorcherds products on O(2,l) and Chern classes of Heegner divisors$9262257 997 $aUNINA