LEADER 01537nam0 22003253i 450 001 BVEE040032 005 20170908093221.0 012 $au*s) V.X. i.++ ++++ (C) 1640 (R)$2fei$9* sta per dittongo ae; +=carattere mancante 100 $a20120320d1640 ||||0itac50 ba 101 | $alat 102 $ait 181 1$6z01$ai $bxxxe 182 1$6z01$an 200 1 $aNix sextilis nouum gratiarum diluuium. Oratio habita Nonis Augusti in sacello Gregoriano basilicae Vatcanae. A Io. Baptista Scala Rom. Vaticani seminarii C 210 $aRomae$ctypis Bernardini Tani$d1640$eRomae$gex typographia Bernardini Tani$h1640 215 $a\6! c.$d4 300 $aSegn.: A⁶ 300 $aEmblema del Seminario Vaticano sul front 300 $aMarca (arnia con le api: Praesidium et dulce decus) in fine. 316 $av. 1 (misc)$5IT-NA0075, A 32 0054 620 $aIT$dRoma$3LO1L002924 700 1$aScala$b, Giovanni Battista$f $3BVEV087909$4070$0744136 712 02$aTani, Bernardino$3RMLV034102$4650 801 3$aIT$bIT-NA0079$c20120320 850 $aIT-NA0075 912 $aBVEE040032 950 0$aBiblioteca statale oratoriana dei Girolamini$c1 v.$d GEA 32 0054$e GE 0000021775 M 0016 v. 1 (misc)$fN $h20120320$i20120320 977 $a GE 996 $aNix sextilis nouum gratiarum diluuium. Oratio habita Nonis Augusti in sacello Gregoriano basilicae Vatcanae. A Io. Baptista Scala Rom. Vaticani seminarii C$91481419 997 $aUNISANNIO LEADER 01058nam0-22003011i-450- 001 990007063350403321 005 20070925124758.0 035 $a000706335 035 $aFED01000706335 035 $a(Aleph)000706335FED01 035 $a000706335 100 $a20020318d1995----km-y0itay50------ba 101 0 $aita 105 $aaf------001yy 200 1 $a<>sarcofago romano dal monumento rinascimentale della Bella Galiana a Viterbo$fA. Carosi, B. Andreae, B. Marocchini, A. Emiliozzi, F. Rausa$ga cura di Adriana Emiliozzi 210 $aViterbo$cEnte Cassa di Risparmio della provincia di Viterbo$d1995 215 $a89 p., 13 p. di tav.$cill.$d32 cm$e1 c. 676 $a733.5 702 1$aCarosi,$bAttilio 702 1$aEmiliozzi,$bAdriana 702 1$aRausa,$bFederico$f<1963- > 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990007063350403321 952 $a733.5 CAR 1$bBibl.41909$fFLFBC 959 $aFLFBC 996 $aSarcofago romano dal monumento rinascimentale della Bella Galiana a Viterbo$9706006 997 $aUNINA LEADER 03132oam 2200457 450 001 9910814519603321 005 20190911112728.0 010 $a981-4415-98-7 035 $a(OCoLC)843872845 035 $a(MiFhGG)GVRL8RIZ 035 $a(EXLCZ)992670000000361829 100 $a20130813h20132013 uy 0 101 0 $aeng 135 $aurun|---uuuua 181 $ctxt 182 $cc 183 $acr 200 10$aFunctional calculi /$fCarlos Bosch, Instituto Tecnologico Autonomo de Mexico, Mexico, Charles Swartz, New Mexico State University, USA 210 $aSingapore $cWorld Scientific$dc2013 210 1$aNew Jersey :$cWorld Scientific,$d[2013] 210 4$d?2013 215 $a1 online resource (x, 215 pages) $cillustrations 225 0 $aGale eBooks 300 $aDescription based upon print version of record. 311 $a981-4415-97-9 320 $aIncludes bibliographical references and index. 327 $aPreface; Contents; 1. Vector and Operator Valued Measures; 1.1 Vector Measures; 1.2 Operator Valued Measures; 1.3 Extensions of Measures; 1.4 Regularity and Countable Additivity; 1.5 Countable Additivity on Products; 2. Functions of a Self Adjoint Operator; 3. Functions of Several Commuting Self Adjoint Operators; 4. The Spectral Theorem for Normal Operators; 5. Integrating Vector Valued Functions; 5.1 Vector Valued Measurable Functions; 5.2 Integrating Vector Valued Functions; 6. An Abstract Functional Calculus; 7. The Riesz Operational Calculus; 7.1 Power Series; 7.2 Laurent Series 327 $a7.3 Runge's Theorem7.4 Several Complex Variables; 7.5 Riesz Operational Calculus; 7.6 Abstract Functional Calculus; 7.7 Spectral Sets; 7.8 Isolated Points; 7.9 Wiener's Theorem; 8. Weyl's Functional Calculus; Appendix A The Orlicz-Pettis Theorem; Appendix B The Spectrum of an Operator; Appendix C Self Adjoint, Normal and Unitary Operators; Appendix D Sesquilinear Functionals; Appendix E Tempered Distributions and the Fourier Transform; E.1 Distributions; E.2 The Spaces S(Rn) and S'(Rn); E.3 Fourier Transform of Functions; E.4 Fourier Transform of a Tempered Distribution 327 $aE.5 Paley-Wiener TheoremsBibliography; Index 330 $aA functional calculus is a construction which associates with an operator or a family of operators a homomorphism from a function space into a subspace of continuous linear operators, i.e. a method for defining "functions of an operator". Perhaps the most familiar example is based on the spectral theorem for bounded self-adjoint operators on a complex Hilbert space.This book contains an exposition of several such functional calculi. In particular, there is an exposition based on the spectral theorem for bounded, self-adjoint operators, an extension to the case of several commuting self-adjoint 606 $aFunctional analysis 615 0$aFunctional analysis. 676 $a515 700 $aBosch$b Carlos$0136133 702 $aSwartz$b Charles$f1938- 801 0$bMiFhGG 801 1$bMiFhGG 906 $aBOOK 912 $a9910814519603321 996 $aFunctional calculi$94078905 997 $aUNINA