LEADER 01054nam0-22003011i-450- 001 990006920070403321 005 20010621 010 $a3-428-08009-2 035 $a000692007 035 $aFED01000692007 035 $a(Aleph)000692007FED01 035 $a000692007 100 $a20010621d1994----km-y0itay50------ba 101 0 $ager 102 $aDE 105 $ay-------001yy 200 1 $a<>Verfassungsrechtliche Gewahrleistung kommunalen Eigentums im Geltungskonflikt von Bundes- und Landesverfassung$eeine Untersuchung zu Grundrechtskollision$fLutz Englisch 210 $aBerlin$cDuncker und Humblot$d1994 215 $a192 p.$d23 cm 225 1 $aSchriften zum öffentlichen Recht$x0582-0200$v658 700 1$aEnglisch,$bLutz$0239054 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990006920070403321 952 $aCOLLEZIONE 147 (658)$b34106*$fFGBC 959 $aFGBC 996 $aVerfassungsrechtliche Gewahrleistung kommunalen Eigentums im Geltungskonflikt von Bundes- und Landesverfassung$9627737 997 $aUNINA LEADER 10951nam 2200553 450 001 9910555274103321 005 20220707203325.0 010 $a3-527-82394-8 010 $a3-527-82396-4 010 $a3-527-82395-6 035 $a(CKB)4950000000280973 035 $a(MiAaPQ)EBC6749065 035 $a(Au-PeEL)EBL6749065 035 $a(OCoLC)1281957445 035 $a(EXLCZ)994950000000280973 100 $a20220707d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$a2D functional nanomaterials $esynthesis, characterization, and applications /$fedited by Ganesh S. Kamble 210 1$aWeinheim, Germany :$cWiley-VCH,$d[2022] 210 4$d©2022 215 $a1 online resource (449 pages) 311 $a3-527-34677-5 320 $aIncludes bibliographical references and index. 327 $aCover -- Title Page -- Copyright -- Contents -- Foreword -- Preface -- Chapter 1 Graphene Chemical Derivatives Synthesis and Applications: State?of?the?Art and Perspectives -- 1.1 Introduction -- 1.2 Graphene Oxide: Synthesis Methods and Chemistry Alteration -- 1.3 Graphene Oxide Reduction and Functionalization -- 1.4 Applications of CMGs -- 1.5 Concluding Remarks -- Acknowledgments -- References -- Chapter 2 2D/2D Graphene Oxide?Layered Double Hydroxide Nanocomposite for the Immobilization of Different Radionuclides -- 2.1 Introduction -- 2.2 Synthesis of GO/LDH Composite -- 2.2.1 Co?precipitation -- 2.2.2 Hydrothermal Preparation -- 2.2.3 Self?Assembly of LDH Nanosheets with GO Nanosheets -- 2.3 Removal of Radionuclides -- 2.3.1 U(VI) Removal -- 2.3.2 Sorption of Eu(III) with the Presence of GO on LDH -- 2.3.3 Co?remediation Anionic SeO42? and Cationic Sr2+ -- 2.4 Conclusion -- References -- Chapter 3 2D Nanomaterials for Biomedical Applications -- 3.1 Introduction -- 3.1.1 Photothermal and Photodynamic Therapy -- 3.1.2 Bioimaging and Drug/Gene Delivery -- 3.1.3 Biosensors -- 3.1.4 Antibacterial Activity -- 3.1.5 Tissue Engineering and Regenerative Medicine -- 3.2 Conclusions -- References -- Chapter 4 Novel Two?Dimensional Nanomaterials for Next?Generation Photodetectors -- 4.1 Introduction -- 4.2 2D Materials for PDs -- 4.2.1 Graphene -- 4.2.2 TMDs (Transition Metal Dichalcogenides) -- 4.2.3 MXenes (2D Transition Metal Carbides/Nitrides) -- 4.2.4 Xenes (Monoelemental 2D Materials) -- 4.3 The Physical Mechanism Enabling Photodetection -- 4.4 Characterization Parameters for Photodetectors -- 4.4.1 Responsivity -- 4.4.2 Detectivity -- 4.4.3 External Quantum Efficiency -- 4.4.4 Gain -- 4.4.5 Response Time -- 4.4.6 Noise Equivalent Power -- 4.5 Synthesis Methods for 2D Materials -- 4.5.1 Mechanical Exfoliation -- 4.5.2 Liquid Exfoliation. 327 $a4.5.3 Chemical Vapor Deposition (CVD) -- 4.6 Photodetectors Based on 2D Materials -- 4.6.1 Photodetectors Based on Graphene -- 4.6.2 Photodetectors Based on MoS2 -- 4.6.3 Photodetectors Based on BP -- 4.7 Photodetectors Based on 2D Heterostructures -- 4.8 Conclusions and Outlook -- References -- Chapter 5 2D Nanomaterials for Cancer Therapy -- 5.1 Introduction -- 5.2 2D Nanomaterials for Cancer Therapy -- 5.2.1 2D Nanomaterials for Combination PTT with PDT -- 5.2.2 2D?Nanomaterials for Combination PTT Therapy with Radiotherapy (RT) -- 5.2.3 2D Nanomaterials for Combination PTT Therapy with Sonodynamic Therapy (SDT) -- 5.2.4 2D Nanomaterials for Combination PTT Therapy with Immune Therapy (ImT) -- 5.3 Summary and Future Perspectives -- References -- Chapter 6 Graphene and Its Derivatives - Synthesis and Applications -- 6.1 Introduction -- 6.2 Graphite -- 6.2.1 Define -- 6.2.2 Synthetic Graphite -- 6.2.3 Characterized and Properties of Graphite -- 6.2.3.1 Structure -- 6.2.4 Applications -- 6.3 Graphene Oxide -- 6.3.1 Define -- 6.3.2 Synthetic of Graphene Oxide -- 6.3.3 Characterized and Properties of Graphene Oxide -- 6.3.3.1 Structure -- 6.3.3.2 Properties of Graphene Oxide -- 6.3.3.3 Applications of Graphene Oxide -- 6.3.3.4 Few Examples -- 6.4 Reduced Graphene Oxide -- 6.4.1 Define -- 6.4.2 Synthetic of Reduced Graphene Oxide or Reduction of Graphene Oxide -- 6.4.2.1 Thermal Reduction of GO -- 6.4.2.2 Photocatalytic Method -- 6.4.2.3 Electrochemical Method -- 6.4.2.4 Other Methods -- 6.4.3 Characterized, Structure, and Properties of Reduced Graphene Oxide -- 6.4.3.1 Structure -- 6.4.3.2 Properties and Applications of Reduced Graphene Oxide -- 6.5 Graphene -- 6.5.1 Define -- 6.5.2 Synthesis of Graphene -- 6.5.2.1 Chemical Vapor Deposition (CVD) -- 6.5.2.2 Epitaxial Growth -- 6.5.2.3 Mechanical Exfoliation. 327 $a6.5.2.4 Chemical Reduction of Graphene Oxide (GO) -- 6.5.3 Characterized, Structure, and Properties of Graphene -- 6.5.3.1 Surface Properties -- 6.5.3.2 Electronic Properties -- 6.5.3.3 Optical Properties -- 6.5.3.4 Mechanical Properties -- 6.5.3.5 Thermal Properties -- 6.5.3.6 Photocatalytic Properties -- 6.5.3.7 Magnetic Properties -- 6.5.3.8 Characterizations of Graphene -- 6.5.3.9 Morphology (SEM, TEM, and AFM) -- 6.5.3.10 Raman Spectroscopy -- 6.5.3.11 X?ray Photoelectron Spectroscopy (XPS) -- 6.5.3.12 UV-Visible Spectroscopy -- 6.5.3.13 X?ray Diffraction (XRD) -- 6.5.3.14 Thermogravimetric Analysis (TGA) -- 6.5.3.15 FTIR Spectroscopy -- 6.5.4 Application of Graphene -- References -- Chapter 7 Recent Trends in Graphene - Latex Nanocomposites -- 7.1 Introduction -- 7.2 Polymer Lattices - An Overview -- 7.3 Graphene - Background -- 7.4 Preparation and Functionalization of Graphene -- 7.5 Graphene - Latex Nanocomposites: Preparation Properties and Applications -- 7.6 Conclusions -- References -- Chapter 8 Advanced Characterization and Techniques -- 8.1 Introduction -- 8.2 Characterization Techniques -- 8.2.1 Optical Techniques - Dynamic Light Scattering (DLS) -- 8.2.2 Optical Spectroscopy -- 8.2.3 NMR?Nuclear Magnetic Resonance Spectroscopy -- 8.2.4 Infrared Spectroscopy (IR) and Raman Spectroscopy -- 8.2.5 X?Ray Photoelectron Spectroscopy (XPS) -- 8.2.6 Characterization Based on Interactions with Electrons or Electron Microscopy (EM) -- 8.2.6.1 Scanning Electron Microscopy (SEM) -- 8.2.6.2 Transmission Electron Microscopy (TEM) -- 8.2.6.3 Scanning Transmission Electron Microscopy (STEM) -- 8.2.6.4 Scanning Tunneling Microscopy (STM) -- 8.2.7 Atomic Force Microscopy (AFM) -- 8.2.8 Kelvin Probe Force Microscopy (KPFM) -- 8.2.9 X?Ray?Based Techniques -- References -- Chapter 9 2D Nanomaterials: Sustainable Materials for Cancer Therapy Applications. 327 $a9.1 Introduction -- 9.2 Types of 2D Nanomaterials -- 9.3 Methods for the Synthesis of 2D Nanomaterials -- 9.4 Mechanism of Cancer Theranostics -- 9.5 Applications of 2D Nanomaterials -- 9.6 Conclusion -- References -- Chapter 10 Recent Advances in Functional 2D Materials for Field Effect Transistors and Nonvolatile Resistive Memories -- 10.1 Introduction to 2D Materials -- 10.2 Electronic Band Structure in 2D Materials -- 10.3 Electronic Transport Properties of 2D Materials -- 10.4 Two?Dimensional Materials in Field Effect Transistors -- 10.4.1 Field Effect Transistors -- 10.4.2 The Rise of 2D Materials Research in FETs -- 10.4.3 Graphene?Based Field Effect Transistors -- 10.4.4 2D Transition Metal Dichalcogenides (TMDCs) in Transistors -- 10.5 Two?Dimensional Materials as Nonvolatile Resistive Memories -- 10.5.1 Nonvolatile Resistive Memories Based on Graphene and Its Derivatives -- 10.5.2 Resistive Switching Memories in 2D Materials "Beyond" Graphene -- 10.5.2.1 Solution?Processed MoS2?Based Resistive Memories -- 10.5.2.2 Solution?Processed Black Phosphorous Nonvolatile Resistive Memories -- 10.5.2.3 Emerging NVM Based on Hexagonal Boron Nitride (h?BN) -- 10.6 Conclusions and Outlook -- References -- Chapter 11 2D Advanced Functional Nanomaterials for Cancer Therapy -- 11.1 Introduction -- 11.2 2D Nanomaterials Classification -- 11.2.1 Graphene Family Nanomaterials -- 11.2.2 Transition Metal Dichalcogenides (TMDs) -- 11.2.3 Layered Double Hydroxides (LDHs) -- 11.2.4 Carbonitrides (MXenes) -- 11.2.5 Black Phosphorus (BP) -- 11.3 Cancer Therapy -- 11.3.1 Mechanism of Action in Cancer Therapy -- 11.3.1.1 Mode of Action of 2D Nanomaterials -- 11.3.2 Photodynamic Therapy for Cancer Cell Treatment -- 11.3.2.1 Mechanism of Photodynamic Therapy -- 11.3.2.2 2D Nanomaterials as Photosensitizer for PDT. 327 $a11.3.2.3 Application of 2D Nanomaterials in Photodynamic Therapy -- 11.3.3 2D Nanomaterials?Cancer Detection/Diagnosis/Theragnostic -- 11.4 Tissue Engineering -- 11.5 Conclusion -- Acknowledgment -- References -- Chapter 12 Synthesis of Nanostructured Materials Via Green and Sol-Gel Methods: A Review -- 12.1 Introduction -- 12.2 Methods Used in Nanostructured Synthesis -- 12.2.1 Green Method of Nanoparticles Synthesis -- 12.2.2 Sol-Gel Method of Nanoparticles Synthesis -- 12.2.3 Green Method of Nanocomposites Synthesis -- 12.2.4 Sol-Gel Method of Nanocomposites -- 12.3 Discussion -- 12.4 Conclusion -- References -- Chapter 13 Study of Antimicrobial Activity of ZnO Nanoparticles Using Leaves Extract of Ficus auriculata Based on Green Chemistry Principles -- 13.1 Introduction -- 13.2 Materials and Methods -- 13.2.1 Chemicals -- 13.2.2 Methodology -- 13.2.3 Antimicrobial Activity -- 13.3 Results and Discussion -- 13.3.1 Characterization of Synthesized Zinc?Oxide Nanoparticles (ZnONPs) -- 13.3.1.1 XRD Analysis -- 13.3.1.2 FT?IR Analysis -- 13.3.1.3 SEM Analysis -- 13.3.1.4 TEM Analysis -- 13.3.2 Antibacterial Activity -- 13.4 Conclusion -- Acknowledgments -- References -- Chapter 14 Piezoelectric Properties of Na1?xKxNbO3 near x & -- equals -- 0.475, Morphotropic Phase Region -- 14.1 Introduction -- 14.2 Experimental Procedure -- 14.3 Results and Discussion -- References -- Chapter 15 Synthesis and Characterization of SDC Nano?Powder for IT?SOFC Applications -- 15.1 Introduction -- 15.1.1 Solid Oxide Fuel Cells (SOFCs) -- 15.1.2 Intermediate Temperature Solid Oxide Fuel Cells (IT?SOFCs) -- 15.1.3 Why Samarium?Doped Ceria (SDC) Material? -- 15.1.4 Various Synthesis Methods for SDC -- 15.1.5 Why SDC Synthesis by Combustion Process? -- 15.1.6 Why SDC Synthesis by Glycine Nitrate Combustion Process (GNP)?. 327 $a15.1.7 Applications of SDC Material Related to Intermediate Temperature Solid Oxide Fuel Cells. 606 $aNanostructured materials$xSynthesis 606 $aNanostructured materials 606 $aNanostructures 608 $aElectronic books. 615 0$aNanostructured materials$xSynthesis. 615 0$aNanostructured materials. 615 0$aNanostructures. 676 $a620.115 702 $aKamble$b Ganesh S. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910555274103321 996 $a2D Functional Nanomaterials$92818098 997 $aUNINA LEADER 02865oam 2200613Ka 450 001 996483568703316 005 20210308114405.0 010 $z906258201X 010 $z9789062582013 035 $a(OCoLC)556407693$z(OCoLC)607785850 035 $a(OCoLC)ocn556407693 035 $a(EXLCZ)9924368498200041 100 $a20100315d1982 uy 0 101 0 $aeng 135 $aurbn||||a|||| 135 $aurbn||||a|a|| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aGleanings from Deir el-Medi?na /$feditors R.J. Demare?e and Jac. J. Janssen 210 $aLeiden, Nederland $cNederlands Instituut voor het Nabije Oosten$d1982 215 $a1 online resource (xii, 312 pages) 225 1 $aEgyptologische uitgaven ;$v1 311 08$aPrint version: Gleanings from Deir el-Medi?na. Leiden, Nederland : Nederlands Instituut voor het Nabije Oosten, 1982 (OCoLC)12986707 320 $aIncludes bibliographical references (pages 245-298). 327 $aDivine intervention in ancient Egypt and its manifestation (b3w) / J.F. Borghouts -- A deputy of the gang knows his business (Hier. Ostr. 67, I) / J.F. Borghouts -- "Remove your stela" (O. Petrie 21 = Hier. Ostr. 16, 4) / R.J. Demare?e -- Two personalities / Jac. J. Janssen -- The mission of the scribe Pesiu?r (O. Berlin 12654) / Jac. J. Janssen -- A draughtsman who became scribe of the tomb: Harshi?re, son of Amennakhte? / Jac. J. Janssen -- Who were the owners, in the "Community of Workmen", of the Chester Beatty papyri / P.W. Pestman -- The "Last will of Naunakhte" and the accession date of Ramesses V / P.W. Pestman -- The days on which the K?nbt used to gather / S.P. Vleeming -- The god Monthu and Deir el-Medi?na / R. van Walsem -- Month-names and feasts at Deir el-Medi?na / R. van Walsem -- A systematic bibliography of Deir el-Medi?na / L.M.J. Zonhoven. 410 0$aEgyptologische uitgaven ;$v1. 606 $aEgyptian language$vTexts 606 $aScribes$zEgypt 606 $aAntiquities$2fast$3(OCoLC)fst00810745 606 $aEgyptian language$2fast$3(OCoLC)fst00903925 606 $aScribes$2fast$3(OCoLC)fst01109393 607 $aDeir el-Medina Site (Egypt) 607 $aEgypt$xAntiquities 607 $aEgypt$2fast 607 $aEgypt$zDeir el-Medina Site$zDeir el-Medina Site$2fast 608 $aTexts.$2fast 615 0$aEgyptian language 615 0$aScribes 615 7$aAntiquities. 615 7$aEgyptian language. 615 7$aScribes. 676 $a932.01 701 $aDemare?e$b R. J$0662526 701 $aJanssen$b Jac. J$0473633 801 0$bOCLCE 801 1$bOCLCE 801 2$bOCLCQ 801 2$bOCLCF 801 2$bOCLCO 801 2$bOCLCQ 912 $a996483568703316 996 $aGleanings from Deir el-Medi?na$92905704 997 $aUNISA