LEADER 00948nam0-22003251i-450- 001 990006785640403321 005 20001010 035 $a000678564 035 $aFED01000678564 035 $a(Aleph)000678564FED01 035 $a000678564 100 $a20001010d--------km-y0itay50------ba 101 0 $aita 105 $ay-------001yy 200 1 $a<>teoria della morte nel Fedone platonico$fRiccardo Di Giuseppe 210 $aBologna$cIl Mulino$d1993. 215 $aXX, 230 p.$d24 cm 225 1 $aIstituto italiano per gli studi storici$v37 610 0 $aPlatone. Fedone 610 0 $aMorte - Concezione - Grecia antica 676 $a128.5 700 1$aDi Giuseppe,$bRiccardo$0251518 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990006785640403321 952 $aCOLLEZ. 1294 (37)$b21995$fFSPBC 959 $aFSPBC 996 $aTeoria della morte nel Fedone platonico$9635723 997 $aUNINA DB $aGEN01 LEADER 02849nam0 2200625 i 450 001 VAN0107586 005 20230801120452.695 017 70$2N$a9789811026577 100 $a20170206d2016 |0itac50 ba 101 $aeng 102 $aSG 105 $a|||| ||||| 200 1 $aConformal symmetry breaking operators for differential forms on spheres$fToshiyuki Kobayashi, Toshihisa Kubo, Michael Pevzner 210 $aSingapore$cSpringer$d2016 215 $aIX, 192 p.$d24 cm 461 1$1001VAN0102250$12001 $aLecture notes in mathematics$1210 $aBerlin [etc.]$cSpringer$v2170 500 1$3VAN0234112$aConformal symmetry breaking operators for differential forms on spheres$91412557 606 $a53A31$xDifferential geometry of submanifolds of Möbius space [MSC 2020]$3VANC021522$2MF 606 $a22E47$xRepresentations of Lie and real algebraic groups: algebraic methods (Verma modules, etc.) [MSC 2020]$3VANC022422$2MF 606 $a22E46$xSemisimple Lie groups and their representations [MSC 2020]$3VANC022569$2MF 606 $a53C10$xG-structures [MSC 2020]$3VANC024090$2MF 606 $a58J70$xInvariance and symmetry properties for PDEs on manifolds [MSC 2020]$3VANC024164$2MF 610 $aBranching law$9KW:K 610 $aConformal geometry$9KW:K 610 $aConformal holography$9KW:K 610 $aDifferential Forms$9KW:K 610 $aF-method$9KW:K 610 $aFradkin-Tseytlin operator$9KW:K 610 $aGegenbauer polynomial$9KW:K 610 $aHodge operator$9KW:K 610 $aHomogeneous space$9KW:K 610 $aHyperbolic space$9KW:K 610 $aHypergeometric function$9KW:K 610 $aLie groups$9KW:K 610 $aLorentz group$9KW:K 610 $aPaneitz operator$9KW:K 610 $aReductive Groups$9KW:K 610 $aRiemannian geometry$9KW:K 610 $aSymmetry breaking operators$9KW:K 610 $aUnitary representations$9KW:K 610 $aVerma module$9KW:K 610 $aYamabe operator$9KW:K 620 $aSG$dSingapore$3VANL000061 700 1$aKobayashi$bToshiyuki$3VANV083001$0721059 701 1$aKubo$bToshihisa$3VANV083002$0721058 701 1$aPevzner$bMichael$3VANV083003$0721057 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttps://doi.org/10.1007/978-981-10-2657-7$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN0107586 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book $e08LNM2170 20170206 996 $aConformal symmetry breaking operators for differential forms on spheres$91412557 997 $aUNICAMPANIA