LEADER 00973nam0-22003011i-450- 001 990006494050403321 005 20001010 035 $a000649405 035 $aFED01000649405 035 $a(Aleph)000649405FED01 035 $a000649405 100 $a20001010d--------km-y0itay50------ba 101 0 $aita 105 $ay-------001yy 200 1 $aChristianity, colonialism and the origins of nationalism among the Ndau of Southern Rhodesia, 1890-1935$fJohn KeithRennie 210 $aAnn Arbor$cUniversity Microfilms Int.$d1973. 215 $aVI, 658 p.$d20 cm 300 $aDissertazione accademica. 676 $a260.7 700 1$aRennie,$bJohn Keith$0244483 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990006494050403321 952 $aXIV E 2600$b20492$fFSPBC 959 $aFSPBC 996 $aChristianity, colonialism and the origins of nationalism among the Ndau of Southern Rhodesia, 1890-1935$9653600 997 $aUNINA DB $aGEN01 LEADER 03641nam 22006255 450 001 9910299967903321 005 20220415173735.0 010 $a3-319-05669-7 024 7 $a10.1007/978-3-319-05669-2 035 $a(CKB)3710000000216621 035 $a(EBL)1802946 035 $a(SSID)ssj0001338770 035 $a(PQKBManifestationID)11770403 035 $a(PQKBTitleCode)TC0001338770 035 $a(PQKBWorkID)11344725 035 $a(PQKB)10964652 035 $a(MiAaPQ)EBC1802946 035 $a(DE-He213)978-3-319-05669-2 035 $a(PPN)180621599 035 $a(EXLCZ)993710000000216621 100 $a20140806d2014 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aLobachevsky geometry and modern nonlinear problems /$fby Andrey Popov 205 $a1st ed. 2014. 210 1$aCham :$cSpringer International Publishing :$cImprint: Birkhäuser,$d2014. 215 $a1 online resource (315 p.) 300 $aDescription based upon print version of record. 311 $a1-322-13460-X 311 $a3-319-05668-9 320 $aIncludes bibliographical references and index. 327 $aIntroduction -- 1 Foundations of Lobachevsky geometry: axiomatics, models, images in Euclidean space -- 2 The problem of realizing the Lobachevsky geometry in Euclidean space -- 3 The sine-Gordon equation: its geometry and applications of current interest -- 4 Lobachevsky geometry and nonlinear equations of mathematical physics -- 5 Non-Euclidean phase spaces. Discrete nets on the Lobachevsky plane and numerical integration algorithms for ?2-equations -- Bibliography -- Index. 330 $aThis monograph presents the basic concepts of hyperbolic Lobachevsky geometry and their possible applications to modern nonlinear applied problems in mathematics and physics, summarizing the findings of roughly the last hundred years. The central sections cover the classical building blocks of hyperbolic Lobachevsky geometry, pseudo spherical surfaces theory, net geometrical investigative techniques of nonlinear differential equations in partial derivatives, and their applications to the analysis of the physical models. As the sine-Gordon equation appears to have profound ?geometrical roots? and numerous applications to modern nonlinear problems, it is treated as a universal ?object? of investigation, connecting many of the problems discussed. The aim of this book is to form a general geometrical view on the different problems of modern mathematics, physics and natural science in general in the context of non-Euclidean hyperbolic geometry. 606 $aGeometry, Algebraic 606 $aDifferential equations, Partial 606 $aMathematical physics 606 $aAlgebraic Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M11019 606 $aPartial Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12155 606 $aMathematical Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/M35000 615 0$aGeometry, Algebraic. 615 0$aDifferential equations, Partial. 615 0$aMathematical physics. 615 14$aAlgebraic Geometry. 615 24$aPartial Differential Equations. 615 24$aMathematical Physics. 676 $a516.9 700 $aPopov$b Andrey$4aut$4http://id.loc.gov/vocabulary/relators/aut$0721624 702 $aIacob$b A. 906 $aBOOK 912 $a9910299967903321 996 $aLobachevsky geometry and modern nonlinear problems$91410286 997 $aUNINA