LEADER 00913nam0-22002891i-450- 001 990006233580403321 005 19980601 035 $a000623358 035 $aFED01000623358 035 $a(Aleph)000623358FED01 035 $a000623358 100 $a19980601d1958----km-y0itay50------ba 105 $a--------00-yy 200 1 $aMexico and the United Nation$eprepared for el Colegio de Mexico and the Carnegie Endowment for International Peace$fJorge Castaneda. 210 $aNew York$cManhattan Publishing Company$d1958 215 $aXI,, 244 p.$d24 cm 225 1 $a"National Studies on International Organization$v13 676 $a341.2 700 1$aCastaneda,$bJorge$0235862 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990006233580403321 952 $aX O 36 (13)$b55531$fFGBC 959 $aFGBC 996 $aMexico and the United Nation$9636439 997 $aUNINA DB $aGIU01 LEADER 02812nam 22005415 450 001 9910349318403321 005 20251113195109.0 010 $a3-030-18638-5 024 7 $a10.1007/978-3-030-18638-8 035 $a(CKB)4100000009453334 035 $a(DE-He213)978-3-030-18638-8 035 $a(MiAaPQ)EBC5928979 035 $a(PPN)258304103 035 $a(EXLCZ)994100000009453334 100 $a20191008d2019 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aBirational Geometry of Hypersurfaces $eGargnano del Garda, Italy, 2018 /$fedited by Andreas Hochenegger, Manfred Lehn, Paolo Stellari 205 $a1st ed. 2019. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2019. 215 $a1 online resource (IX, 297 p. 36 illus.) 225 1 $aLecture Notes of the Unione Matematica Italiana,$x1862-9121 ;$v26 311 08$a3-030-18637-7 330 $aOriginating from the School on Birational Geometry of Hypersurfaces, this volume focuses on the notion of (stable) rationality of projective varieties and, more specifically, hypersurfaces in projective spaces, and provides a large number of open questions, techniques and spectacular results. The aim of the school was to shed light on this vast area of research by concentrating on two main aspects: (1) Approaches focusing on (stable) rationality using deformation theory and Chow-theoretic tools like decomposition of the diagonal; (2) The connection between K3 surfaces, hyperkähler geometry and cubic fourfolds, which has both a Hodge-theoretic and a homological side. Featuring the beautiful lectures given at the school by Jean-Louis Colliot-Thélène, Daniel Huybrechts, Emanuele Macrì, and Claire Voisin, the volume also includes additional notes by János Kollár and an appendix by Andreas Hochenegger. . 410 0$aLecture Notes of the Unione Matematica Italiana,$x1862-9121 ;$v26 606 $aAlgebraic geometry 606 $aAlgebra, Homological 606 $aAlgebraic Geometry 606 $aCategory Theory, Homological Algebra 615 0$aAlgebraic geometry. 615 0$aAlgebra, Homological. 615 14$aAlgebraic Geometry. 615 24$aCategory Theory, Homological Algebra. 676 $a516.35 676 $a516.5 702 $aHochenegger$b Andreas$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aLehn$b Manfred$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aStellari$b Paolo$4edt$4http://id.loc.gov/vocabulary/relators/edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910349318403321 996 $aBirational Geometry of Hypersurfaces$91668178 997 $aUNINA