LEADER 00796nam0-22002771i-450- 001 990006230120403321 005 19980601 035 $a000623012 035 $aFED01000623012 035 $a(Aleph)000623012FED01 035 $a000623012 100 $a19980601d1888----km-y0itay50------ba 105 $a--------00-yy 200 1 $aFranz Hotmann's Antitribonian$eein Beitrag zu den Codificationsbestrebungen vom XVI bis zum XVIII Jahrhundert$fJ. Baron. 210 $aBernae$cTypis S. Collini$d1888 215 $aXLVI,$d24 cm 676 $a340.5 700 1$aBaron,$bJ.$0337532 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990006230120403321 952 $aV H 159$fFGBC 959 $aFGBC 996 $aFranz Hotmann's Antitribonian$9636275 997 $aUNINA DB $aGIU01 LEADER 03132nam 22005535 450 001 9910866582803321 005 20250808093509.0 010 $a9783031579851$b(electronic bk.) 010 $z9783031579844 024 7 $a10.1007/978-3-031-57985-1 035 $a(MiAaPQ)EBC31497558 035 $a(Au-PeEL)EBL31497558 035 $a(CKB)32320327300041 035 $a(DE-He213)978-3-031-57985-1 035 $a(OCoLC)1442332214 035 $a(PPN)279800398 035 $a(EXLCZ)9932320327300041 100 $a20240620d2024 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aKnotted Fields /$fedited by Renzo L. Ricca, Xin Liu 205 $a1st ed. 2024. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2024. 215 $a1 online resource (355 pages) 225 1 $aLecture Notes in Mathematics,$x1617-9692 ;$v2344 311 08$aPrint version: Ricca, Renzo L. Knotted Fields Cham : Springer International Publishing AG,c2024 9783031579844 327 $a- A Topological Approach to Vortex Knots and Links -- From Knot Invariants to Knot Dynamics -- Multi-Valued Potentials in Topological Field Theory -- Excitable and Magnetic Knots -- Spiral Waves in Excitable Media: Seifert Framing and Helicity -- Designing Knotted Fields in Light and Electromagnetism -- Tangled Vortex Lines: Dynamics, Geometry and Topology of Quantum Turbulence -- An Introduction to Knotplot -- Using the Homflypt Polynomial to Compute Knot Types. 330 $aThis book provides a remarkable collection of contributions written by some of the most accredited world experts in the modern area of Knotted Fields. Scope of the book is to provide an updated view of some of the key aspects of contemporary research, with the purpose to cover basic concepts and techniques commonly used in the context of Knotted Fields. The material is presented to help the interested reader to become familiar with the fundamentals, from fluid flows to electromagnetism, from knot theory to numerical visualization, while presenting the new ideas and results in an accessible way to beginners and young researchers. No advanced knowledge is required, and at the end of each chapter, key references are provided to offer further information on particular topics of interest. All those keen on modern applications of topological techniques to the study of knotted fields in mathematical physics will find here a valuable and unique source of information. The work will be of interest to many researchers in the field. 410 0$aLecture Notes in Mathematics,$x1617-9692 ;$v2344 606 $aGeometry 606 $aTopology 606 $aGeometry 606 $aTopology 615 0$aGeometry. 615 0$aTopology. 615 14$aGeometry. 615 24$aTopology. 676 $a516 700 $aRicca$b Renzo L$0433760 701 $aLiu$b Xin$0755515 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910866582803321 996 $aKnotted Fields$94348604 997 $aUNINA