LEADER 00933cam0-2200301---450- 001 990005854860403321 005 20160421155806.0 035 $a000585486 035 $aFED01000585486 035 $a(Aleph)000585486FED01 035 $a000585486 100 $a19990604d1970----km-y0itay50------ba 101 0 $aeng 102 $aSE 105 $a--------001yy 200 1 $aEnglish denominal adjectives$ea generative study of the semantics of a group of high-frequency denominal adjectives in english$fby Magnus Ljung 210 $aGöteborg$cActa Universitatis Gothoburgensis$d1970 215 $a249 p.$d23 cm 225 1 $aGothenburg studies in english$v21 610 0 $aLingua inglese$aGrammatica 676 $a425$v22$zita 700 1$aLjung,$bMagnus$0172323 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990005854860403321 952 $a425 LJU 1$bDip.f.m.2335$fFLFBC 959 $aFLFBC 997 $aUNINA LEADER 03591oam 2200481 450 001 996418193203316 005 20210505192246.0 010 $a3-030-56409-6 024 7 $a10.1007/978-3-030-56409-4 035 $a(CKB)4100000011610161 035 $a(MiAaPQ)EBC6404797 035 $a(DE-He213)978-3-030-56409-4 035 $a(PPN)25251002X 035 $a(EXLCZ)994100000011610161 100 $a20210505d2020 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aFrontiers in analysis and probability $ein the spirit of the Strasbourg-Zürich meetings /$fNalini Anantharaman, Ashkan Nikeghbali, Michael Th. Rassias, editors 205 $a1st ed. 2020. 210 1$aCham, Switzerland :$cSpringer,$d[2020] 210 4$d©2020 215 $a1 online resource (VII, 449 p. 31 illus., 17 illus. in color.) 311 $a3-030-56408-8 327 $aMonochromatic Random Waves for general Riemannian manifolds (Canzani) -- A Brief Review of the ?ETH- Approach to Quantum Mechanics? (Fröhlich) -- Linear and non-linear harmonic boundaries of graphs; an approach with ?p-cohomology in degree one (Gournay) -- Polyharmonic functions for finite graphs and Markov chains (Hirschler) -- Interacting electrons in a random medium: a simple one-dimensional model (Klopp) -- Entropies for negatively curved manifolds (Ledrappie)- Two-dimensional quantum Yang-Mills theory and the Makeenko-Migdal equations (Lévy) -- Limit operators for circular ensembles (Maples) -- Gibbs measures of nonlinear Schrödinger equations as limits of quantum many-body states in dimension d ? 3 (Sohinger) -- Interfaces in spectral asymptotics and nodal sets (Zelditch). 330 $aThe volume presents extensive research devoted to a broad spectrum of mathematical analysis and probability theory. Subjects discussed in this Work are those treated in the so-called Strasbourg?Zürich Meetings. These meetings occur twice yearly in each of the cities, Strasbourg and Zürich, venues of vibrant mathematical communication and worldwide gatherings. The topical scope of the book includes the study of monochromatic random waves defined for general Riemannian manifolds, notions of entropy related to a compact manifold of negative curvature, interacting electrons in a random background, lp-cohomology (in degree one) of a graph and its connections with other topics, limit operators for circular ensembles, polyharmonic functions for finite graphs and Markov chains, the ETH-Approach to Quantum Mechanics, 2-dimensional quantum Yang?Mills theory, Gibbs measures of nonlinear Schrödinger equations, interfaces in spectral asymptotics and nodal sets. Contributions in this Work are composed by experts from the international community, who have presented the state-of-the-art research in the corresponding problems treated. This volume is expected to be a valuable resource to both graduate students and research mathematicians working in analysis, probability as well as their interconnections and applications. 606 $aMathematical analysis 606 $aProbabilities 615 0$aMathematical analysis. 615 0$aProbabilities. 676 $a515 702 $aAnantharaman$b Nalini 702 $aNikeghbali$b Ashkan 702 $aRassias$b Michael Th.$f1987- 801 0$bCaPaEBR 801 1$bCaPaEBR 801 2$bUtOrBLW 906 $aBOOK 912 $a996418193203316 996 $aFrontiers in analysis and probability$92018985 997 $aUNISA LEADER 01649nam0 22003853i 450 001 AQ10029158 005 20251003044042.0 010 $a0792396634 100 $a20081203d1996 ||||0itac50 ba 101 | $aeng 102 $aus 181 1$6z01$ai $bxxxe 182 1$6z01$an 200 1 $aLogic-based 0-1 constraint programming$fPeter Barth 210 $aBoston [etc.]$cKluwer$dc1996 215 $aXIV, 253 p.$d25 cm 225 | $aOperations research/computer science interfaces$v5 300 $aBibliografia: P. [233]-249. 312 $aVariante del titolo: Logic-based zero-one constraint programming$9NAP0596767 410 0$1001AQ10029159$12001 $aOperations research/computer science interfaces$v5 517 1 $aLogic-based zero-one constraint programming$9NAP0596767 606 $aRicerca operativa$2FIR$3CFIC016104$9E 606 $aProgrammazione logica$2FIR$3CFIC136733$9E 606 $aProgrammazione $2FIR$3MILC104566$9E 676 $a519.700285$9MATEMATICA APPLICATA. PROGRAMMAZIONE. Elaborazione dei dati Applicazioni dell'elaboratore$v14 676 $a519.770285511$9PROGRAMMAZIONE A NUMERI INTERI. Tecniche speciali di programmazione$v22 700 1$aBarth$b, Peter$3TO0V164234$4070$0770279 801 3$aIT$bIT-000000$c20081203 850 $aIT-BN0095 901 $bNAP 01$cSALA DING $n$ 912 $aAQ10029158 950 0$aBiblioteca Centralizzata di Ateneo$c1 v.$d 01SALA DING 519.700285 BAR.lo$e 0102 0000028355 VMA A4 1 v.$fY $h19970930$i19970930 977 $a 01 996 $aLogic-based 0-1 constraint programming$91571180 997 $aUNISANNIO