LEADER 00851nam0-22003011i-450- 001 990003043620403321 005 20031126142854.0 035 $a000304362 035 $aFED01000304362 035 $a(Aleph)000304362FED01 035 $a000304362 100 $a20030910d1960----km-y0itay50------ba 101 0 $afre 102 $aFR 200 1 $aDe la division du travail social$fEmile Durkheim 205 $a7e ed. 210 $aParis$cPresses universitaires de France$d1960 215 $aXLIV, 416 p.$d23 cm 225 1 $aBibliothèque de philosophie contemporaine 676 $a181 700 1$aDurkheim,$bÉmile$f<1858-1917>$0422265 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990003043620403321 952 $a18100 DUR$b018181$fSES 959 $aSES 996 $aDe la division du travail social$914057 997 $aUNINA LEADER 02856nam 22005175a 450 001 9910151939103321 005 20210304234502.0 010 $a3-03719-500-2 024 70$a10.4171/000 035 $a(CKB)3710000000953784 035 $a(CH-001817-3)15-210304 035 $a(PPN)178152803 035 $a(EXLCZ)993710000000953784 100 $a20210304j20031215 fy 0 101 0 $aeng 135 $aurnn|mmmmamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aLogarithmic combinatorial structures: a probabilistic approach$b[electronic resource] /$fRichard Arratia, A. D. Barbour, Simon Tavare? 210 3 $aZuerich, Switzerland $cEuropean Mathematical Society Publishing House$d2003 215 $a1 online resource (374 pages) 225 0 $aEMS Monographs in Mathematics (EMM) ;$x2523-5192 330 $aThe elements of many classical combinatorial structures can be naturally decomposed into components. Permutations can be decomposed into cycles, polynomials over a finite field into irreducible factors, mappings into connected components. In all of these examples, and in many more, there are strong similarities between the numbers of components of different sizes that are found in the decompositions of `typical' elements of large size. For instance, the total number of components grows logarithmically with the size of the element, and the size of the largest component is an appreciable fraction of the whole. This book explains the similarities in asymptotic behaviour as the result of two basic properties shared by the structures: the conditioning relation and the logarithmic condition. The discussion is conducted in the language of probability, enabling the theory to be developed under rather general and explicit conditions; for the finer conclusions, Stein's method emerges as the key ingredient. The book is thus of particular interest to graduate students and researchers in both combinatorics and probability theory. 517 $aLogarithmic Combinatorial Structures 606 $aProbability & statistics$2bicssc 606 $aAlgebra$2bicssc 606 $aNumber theory$2bicssc 606 $aProbability theory and stochastic processes$2msc 606 $aNumber theory$2msc 606 $aField theory and polynomials$2msc 615 07$aProbability & statistics 615 07$aAlgebra 615 07$aNumber theory 615 07$aProbability theory and stochastic processes 615 07$aNumber theory 615 07$aField theory and polynomials 686 $a60-xx$a11-xx$a12-xx$2msc 700 $aArratia$b Richard$0482210 702 $aBarbour$b A. D. 702 $aTavare?$b Simon 801 0$bch0018173 906 $aBOOK 912 $a9910151939103321 996 $aLogarithmic combinatorial structures$9277432 997 $aUNINA LEADER 00728nam0-22002651i-450 001 990005056880403321 005 20230125114746.0 035 $a000505688 035 $aFED01000505688 035 $a(Aleph)000505688FED01 100 $a19990530g19319999km-y0itay50------ba 101 0 $aita 102 $aIT 105 $ay-------001yy 200 1 $aStoria di un brigante$eromanzo$fNino Savarese 210 $aMilano$cCasa Ed. Ceschina$d1931 215 $a250 p.$d19 cm 700 1$aSavarese,$bNino$f<1882-1945>$0166820 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990005056880403321 952 $aIX SA 20$bFil.Mod. 2772$fFLFBC 959 $aFLFBC 996 $aStoria di un brigante$9532269 997 $aUNINA LEADER 00885nam0-22002651i-450 001 990005717100403321 005 20240423141427.0 035 $aFED01000571710 035 $a(Aleph)000571710FED01 035 $a000571710 100 $a19990604d1934----km-y0itay50------ba 101 0 $aita 102 $aIT 105 $ay---e---001yy 200 1 $aDizionarietto dei termini alpinistici e degli sport alpini$fClub alpino italiano, Comitato scientifico, Commissione toponomastica 210 $aMilano$cClub Alpino Italiano$d1934 215 $a47 p.$d26 cm 710 02$aClub alpino italiano.$bCommissione toponomastica$0432760 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990005717100403321 952 $aGlott. A I c 46 (8)$bIst. Glott. D.I.$fFLFBC 959 $aFLFBC 996 $aDizionarietto dei termini alpinistici e degli sport alpini$9574168 997 $aUNINA LEADER 01324cam2-2200349---450 001 990005832320403321 005 20250219125825.0 010 $a88-86602-07-3 035 $a000583232 035 $aFED01000583232 035 $a(Aleph)000583232FED01 035 $a000583232 100 $a19990604d1996----km-y0itay50------ba 101 0 $aita 102 $aIT 105 $aa---e---001yy 200 1 $a<>nomi locali dei comuni di Bolbeno, Bondo, Breguzzo, Roncone, Zuclo$f[a cura di Lidia Flöss] 210 $aTrento$cProvincia Autonoma di Trento. Servizio Beni Librari e Archivistici$d1996 215 $a274 p.$cill.$d31 cm$e4 c. topogr. in custodia 327 1 $a[2]: Elenco dei toponimi dei comuni di Bolbeno, Bondo, Breguzzo, Roncone, Zuclo. - 1 cartella (1 fasc., 1 c., 4 c. topogr. ripieg.) 461 0$1001000944046$12001$aDizionario toponomastico trentino$v4 610 0 $aToponimi$aTrentino$aDizionari 676 $a914.5385 702 1$aFlöss,$bLidia$f<1963- > 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990005832320403321 952 $a914.15 DTT 01 (04)$bDIP.FIL.MOD. 9301$fFLFBC 952 $a914.15 DTT 01 (04) carte$bDIP.FIL.MOD. 9301$fFLFBC 959 $aFLFBC 996 $aNomi locali dei comuni di Bolbeno, Bondo, Breguzzo, Roncone, Zuclo$9566899 997 $aUNINA