LEADER 00767nam0-22002891i-450- 001 990005578180403321 005 20070913113643.0 035 $a000557818 035 $aFED01000557818 035 $a(Aleph)000557818FED01 035 $a000557818 100 $a19990604d1981----km-y0itay50------ba 101 0 $aita 105 $aa-------00--- 200 1 $aPiazza San Pietro$fMasimo Birindelli 210 $aBari$cLaterza$d1981 215 $aXI, 282 p.$cill.$d25 cm 225 1 $aGrandi opere 676 $a711.55 700 1$aBirindelli,$bMassimo$037551 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990005578180403321 952 $a711.55 BIR 1$bST.ARTE 14541$fFLFBC 959 $aFLFBC 996 $aPiazza San Pietro$9296228 997 $aUNINA LEADER 02693nam0 22005773i 450 001 VAN0249334 005 20230530021823.138 017 70$2N$a9783030313517 100 $a20220829d2020 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aHandbook of Variational Methods for Nonlinear Geometric Data$fPhilipp Grohs, Martin Holler, Andreas Weinmann editors 210 $aCham$cSpringer$d2020 215 $axxvi, 701 p.$cill.$d24 cm 500 1$3VAN0249335$aHandbook of Variational Methods for Nonlinear Geometric Data$92377951 606 $a65-XX$xNumerical analysis [MSC 2020]$3VANC019772$2MF 606 $a65Mxx$xNumerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems [MSC 2020]$3VANC020831$2MF 606 $a65Nxx$xNumerical methods for partial differential equations, boundary value problems [MSC 2020]$3VANC020832$2MF 606 $a65Dxx$xNumerical approximation and computational geometry (primarily algorithms) [MSC 2020]$3VANC022980$2MF 606 $a00B15$xCollections of articles of miscellaneous specific interest [MSC 2020]$3VANC023985$2MF 610 $aApplied differential geometry$9KW:K 610 $aCurvature regularization$9KW:K 610 $aDenoising$9KW:K 610 $aDiffusion tensor imaging$9KW:K 610 $aFunctional lifting techniques$9KW:K 610 $aGeometric finite elements$9KW:K 610 $aGeometric nonlinear data$9KW:K 610 $aGeometry processing$9KW:K 610 $aLabeling$9KW:K 610 $aManifold valued data$9KW:K 610 $aMedical Imaging$9KW:K 610 $aMetamorphosis models$9KW:K 610 $aOptical flow$9KW:K 610 $aOptimization in manifolds$9KW:K 610 $aStatistics in manifolds$9KW:K 610 $aTotal variation$9KW:K 610 $aVariational methods$9KW:K 620 $aCH$dCham$3VANL001889 702 1$aGrohs$bPhilipp$3VANV203961 702 1$aHoller$bMartin$3VANV203962 702 1$aWeinmann$bAndreas$3VANV203963 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttp://doi.org/10.1007/978-3-030-31351-7$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN0249334 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book 4689 $e08eMF4689 20220829 996 $aHandbook of Variational Methods for Nonlinear Geometric Data$92377951 997 $aUNICAMPANIA