LEADER 00806nam0-22002771i-450- 001 990005498720403321 005 19990530 035 $a000549872 035 $aFED01000549872 035 $a(Aleph)000549872FED01 035 $a000549872 100 $a19990530d1974----km-y0itay50------ba 101 0 $ager 105 $ay-------001yy 200 1 $a<>gesuchte Mitte$eSkizzen zur österreichischen Literatur$fGottfried Stix 210 $aRoma$cEdizioni di storia e letteratura$d1974 215 $a95 p.$d21 cm 225 1 $aLetture di pensiero e d'arte$v47 700 1$aStix,$bGottfried$0212563 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990005498720403321 952 $aCOLL. 46 (47)$bBIBL. 50068$fFLFBC 959 $aFLFBC 996 $aGesuchte Mitte$9589163 997 $aUNINA LEADER 04290nam 22006975 450 001 9910254069103321 005 20240424231716.0 010 $a3-319-26309-9 024 7 $a10.1007/978-3-319-26309-0 035 $a(CKB)3710000000616281 035 $a(EBL)4453016 035 $a(OCoLC)945095086 035 $a(SSID)ssj0001653340 035 $a(PQKBManifestationID)16433556 035 $a(PQKBTitleCode)TC0001653340 035 $a(PQKBWorkID)14982166 035 $a(PQKB)10398127 035 $a(DE-He213)978-3-319-26309-0 035 $a(MiAaPQ)EBC4453016 035 $a(PPN)192772163 035 $a(EXLCZ)993710000000616281 100 $a20160316d2016 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aBoundary Integral Equation Methods and Numerical Solutions $eThin Plates on an Elastic Foundation /$fby Christian Constanda, Dale Doty, William Hamill 205 $a1st ed. 2016. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2016. 215 $a1 online resource (242 p.) 225 1 $aDevelopments in Mathematics,$x1389-2177 ;$v35 300 $aDescription based upon print version of record. 311 $a3-319-26307-2 320 $aIncludes bibliographical references and index. 327 $aPreface -- 1. The Mathematical Model -- 2. The Layer Potentials -- 3. Existence of Solutions -- 4. Software Development -- 5. Computational Examples -- References -- Index. 330 $aThis book presents and explains a general, efficient, and elegant method for solving the Dirichlet, Neumann, and Robin boundary value problems for the extensional deformation of a thin plate on an elastic foundation. The solutions of these problems are obtained both analytically?by means of direct and indirect boundary integral equation methods (BIEMs)?and numerically, through the application of a boundary element technique. The text discusses the methodology for constructing a BIEM, deriving all the attending mathematical properties with full rigor. The model investigated in the book can serve as a template for the study of any linear elliptic two-dimensional problem with constant coefficients. The representation of the solution in terms of single-layer and double-layer potentials is pivotal in the development of a BIEM, which, in turn, forms the basis for the second part of the book, where approximate solutions are computed with a high degree of accuracy. The book is intended for graduate students and researchers in the fields of boundary integral equation methods, computational mechanics and, more generally, scientists working in the areas of applied mathematics and engineering. Given its detailed presentation of the material, the book can also be used as a text in a specialized graduate course on the applications of the boundary element method to the numerical computation of solutions in a wide variety of problems. . 410 0$aDevelopments in Mathematics,$x1389-2177 ;$v35 606 $aIntegral equations 606 $aDifferential equations, Partial 606 $aFunctions of complex variables 606 $aIntegral Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12090 606 $aPartial Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12155 606 $aFunctions of a Complex Variable$3https://scigraph.springernature.com/ontologies/product-market-codes/M12074 615 0$aIntegral equations. 615 0$aDifferential equations, Partial. 615 0$aFunctions of complex variables. 615 14$aIntegral Equations. 615 24$aPartial Differential Equations. 615 24$aFunctions of a Complex Variable. 676 $a510 700 $aConstanda$b Christian$4aut$4http://id.loc.gov/vocabulary/relators/aut$057207 702 $aDoty$b Dale$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aHamill$b William$c(Mathematician)$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254069103321 996 $aBoundary Integral Equation Methods and Numerical Solutions$91983096 997 $aUNINA