LEADER 02789nam 2200601 450 001 996466662703316 005 20220820150658.0 010 $a3-540-47920-1 024 7 $a10.1007/BFb0092243 035 $a(CKB)1000000000437157 035 $a(SSID)ssj0000325077 035 $a(PQKBManifestationID)12118365 035 $a(PQKBTitleCode)TC0000325077 035 $a(PQKBWorkID)10319724 035 $a(PQKB)11438980 035 $a(DE-He213)978-3-540-47920-8 035 $a(MiAaPQ)EBC5591238 035 $a(Au-PeEL)EBL5591238 035 $a(OCoLC)1066189478 035 $a(MiAaPQ)EBC6819109 035 $a(Au-PeEL)EBL6819109 035 $a(OCoLC)793079334 035 $a(PPN)155165011 035 $a(EXLCZ)991000000000437157 100 $a20220820d1993 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aNearly integrable infinite-dimensional hamiltonian systems /$fSergej B. Kuksin 205 $a1st ed. 1993. 210 1$aBerlin :$cSpringer-Verlag,$d[1993] 210 4$dİ1993 215 $a1 online resource (XXVIII, 104 p.) 225 1 $aLecture Notes in Mathematics 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-387-57161-2 311 $a3-540-57161-2 327 $aSymplectic structures and hamiltonian systems in scales of hilbert spaces -- Statement of the main theorem and its consequences -- Proof of the main theorem. 330 $aThe book is devoted to partial differential equations of Hamiltonian form, close to integrable equations. For such equations a KAM-like theorem is proved, stating that solutions of the unperturbed equation that are quasiperiodic in time mostly persist in the perturbed one. The theorem is applied to classical nonlinear PDE's with one-dimensional space variable such as the nonlinear string and nonlinear Schr|dinger equation andshow that the equations have "regular" (=time-quasiperiodic and time-periodic) solutions in rich supply. These results cannot be obtained by other techniques. The book will thus be of interest to mathematicians and physicists working with nonlinear PDE's. An extensivesummary of the results and of related topics is provided in the Introduction. All the nontraditional material used is discussed in the firstpart of the book and in five appendices. 410 0$aLecture notes in mathematics (Springer-Verlag) 606 $aHamiltonian systems 615 0$aHamiltonian systems. 676 $a514.74 700 $aKuksin$b Sergej B.$f1955-$060265 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466662703316 996 $aNearly integrable infinite-dimensional hamiltonian systems$978705 997 $aUNISA LEADER 00816nam0-22002771i-450 001 990005356360403321 005 20230906153203.0 035 $a000535636 035 $aFED01000535636 035 $a(Aleph)000535636FED01 035 $a000535636 100 $a19990604d1958----km-y0itay50------ba 101 0 $aita 105 $ay-------001yy 200 1 $aAlkamenes$fDomenico Mustilli 210 $a[S.l.$cs.n.]$d[1958] 215 $aCol. 217-224$d31 cm 300 $aEstratto da: Enciclopedia Universale dell'Arte/ Istituto per la collaborazione culturale vol.1 700 1$aMustilli,$bDomenico$0185541 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990005356360403321 952 $aARCH. BM MISC. 047 (10)$bARCH. 14960$fFLFBC 959 $aFLFBC 996 $aAlkamenes$9594463 997 $aUNINA