LEADER 01199nam 2200373 450 001 000001828 005 20070503173300.0 100 $a--------d1947----km-y0itay0103----ba 101 0 $aeng 102 $aUS 200 1 $a<> tamarack tree$fby Howard Breslin 200 1 $a1 $n0003498 210 $aNew York ; London$cWhittlesey House$cMcGraw-Hill$dc1947 215 $a378 p.$d21 cm. 676 $a813 700 1$aBreslin,$bHoward$0438791 801 0$aIT$bUniversità della Basilicata - B.I.A.$gRICA$2unimarc 912 $a000001828 996 $aTamarack tree$971686 997 $aUNIBAS BAS $aMONLET BAS $aMONOGR BAS $aLETTERE CAT $aCARLUCCI$b01$c19990802$lBAS01$h1154 CAT $c20000920$lBAS01$h1829 CAT $c20001010$lBAS01$h1632 CAT $c20050601$lBAS01$h1752 CAT $abatch$b01$c20050718$lBAS01$h1047 CAT $c20050718$lBAS01$h1106 CAT $c20050718$lBAS01$h1136 CAT $c20050718$lBAS01$h1150 CAT $aBATCH$b00$c20070503$lBAS01$h1733 FMT Z30 -1$lBAS01$LBAS01$mBOOK$1BASA1$APolo Storico-Umanistico$2GEN$BCollezione generale$3FP/2470$9FP/2470$62470$5L2470$819990802$f02$FPrestabile Generale LEADER 00741nam0-22002651i-450 001 990005325240403321 005 20221117115137.0 035 $a000532524 035 $aFED01000532524 035 $a(Aleph)000532524FED01 035 $a000532524 100 $a19990530d1962----km-y0itay50------ba 101 0 $aita 105 $af-------00--- 200 1 $aScoprendo l'antico Oriente$fSabatino Moscati 210 $aBari$cLaterza$d1962 215 $a198 p., 40 tav.$d23 cm 700 1$aMoscati,$bSabatino$f<1922-1997>$03176 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990005325240403321 952 $aARCH. BM Z 015$bARCH. 13488$fFLFBC 959 $aFLFBC 996 $aScoprendo l'antico Oriente$9139120 997 $aUNINA LEADER 00942nam a22002411i 4500 001 991003400939707536 008 080220s19540000it ac 000 0 ita d 035 $ab13685351-39ule_inst 040 $aDip.to Studi Giuridici$bita 082 0 $a345.05 100 1 $aCassinelli, Bruno$0224849 245 10$aProspetto storico del diritto penale /$cBruno Cassinelli 260 $aMilano :$bDall'Oglio,$cstampa 1954 300 $a223 p., 17 tav. :$bill., ritr. ;$c21 cm. 440 0$aOpere giuridiche di Bruno Cassinelli 650 04$aDiritto penale$xStoria$xSaggio 650 04$aPositivismo$xDiritto penale$xStoria 907 $a.b13685351$b28-01-14$c20-02-08 912 $a991003400939707536 945 $aLE027 F/A II J CAS01.01$g1$i2027000143450$lle027$op$pE18.00$q-$rn$so $t0$u0$v0$w0$x0$y.i14675638$z20-02-08 996 $aProspetto storico del diritto penale$9562317 997 $aUNISALENTO 998 $ale027$b20-02-08$cm$da $e-$fita$git $h0$i0 LEADER 09770nam 2200613 a 450 001 9911019389503321 005 20200520144314.0 010 $a9786613174994 010 $a9780470669181 010 $a0470669187 010 $a9780470669167 010 $a0470669160 010 $a9781283174992 010 $a1283174995 010 $a9781119957249 010 $a1119957249 035 $a(CKB)3710000000503760 035 $a(EBL)4043260 035 $a(MiAaPQ)EBC547190 035 $a(OCoLC)654805856 035 $a(PPN)156633388 035 $a(Perlego)1012688 035 $a(EXLCZ)993710000000503760 100 $a20100416d2010 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aStatistics for sensory and consumer science /$fTormod Ns and Per B. Brockhoff and Oliver Tomic 210 $aChichester, West Sussex ;$aHoboken, N.J. $cWiley$d2010 215 $a1 online resource (308 p.) 300 $aDescription based upon print version of record. 311 08$a9780470518212 311 08$a0470518219 320 $aIncludes bibliographical references and index. 327 $aMachine generated contents note: Contents -- Preface -- Acknowledgements -- Chapter 1. Introduction -- Chapter 2. Important data collection techniques for sensory and consumer studies -- 2.1. Sensory panel methodologies -- 2.2 Consumer tests -- Chapter 3. Quality control of sensory profile data -- 3.1. General introduction -- 3.2. Visual inspection of raw data -- 3.3 Mixed model ANOVA for assessing the importance of the sensory attributes. -- 3.4 Overall assessment of assessor differences using all variables simultaneously -- 3.5 Methods for detecting differences in use of the scale -- 3.6. Comparing the assessors' ability to detect differences between the products. -- 3.7. Relations between individual assessor ratings and the panel average -- 3.8. Individual line plots for detailed inspection of assessors -- 3.9. Miscellaneous methods -- Chapter 4. Correction methods and other remedies for improving sensory profile data. -- 4.1. Introduction -- 4.2. Correcting for different use of the scale. -- 4.3. Computing improved panel averages -- 4.4 Pre-processing of data for three-way analysis -- Chapter 5. Detecting and studying sensory differences and similarities between products. -- 5.1 Introduction -- 5.2 Analysing sensory profile data - univariate case -- 5.3 Analysing sensory profile data - multivariate case -- Chapter 6. Relating sensory data to other measurements. -- 6.2 Estimating relations between consensus profiles and external data -- 6.3 Estimating relations between individual sensory profiles and external data -- Chapter 7. Discrimination and similarity testing -- 7.1 Introduction -- 7.2 Analysis of data from basic sensory discrimination tests -- 7.3 Examples of basic discrimination testing -- 7.4. Power calculations in discrimination tests. -- 7.5 Thurstonian modelling - what is it really? -- 7. 6 Similarity versus difference testing -- 7.7 Replications - what to do? -- 7.8 Designed experiments, extended analysis and other test protocols -- Chapter 8. Investigating important factors influencing food acceptance and choice (conjoint analysis). -- 8.1 Introduction. -- 8.2. Preliminary analysis of consumer data sets (raw data overview). -- 8.3 Experimental designs for rating based consumer studies -- 8.4 Analysis of categorical effect variables -- 8.5. Incorporating additional information about consumers -- 8.6 Modelling of factors as continuous variables -- 8.7. Reliability/validity testing for rating based methods. -- 8.8. Rank based methodology -- 8.9. Choice based conjoint analysis -- 8.10 Market share simulation -- Chapter 9. Preference mapping for understanding relations between sensory product attributes and consumer acceptance -- 9.1 Introduction -- 9.2 External and internal preference mapping -- 9.3. Examples of linear preference mapping. -- 9.4 Ideal point preference mapping. -- 9.5. Selecting samples for preference mapping -- 9.6. Incorporating additional consumer attributes -- 9.7 Combining preference mapping with additional information about the samples -- Chapter 10. Segmentation of consumer data. -- 10.1 Introduction -- 10.2 Segmentation of rating data -- 10.3. Relating segments to consumer attributes. Chapter 11. Basic Statistics -- Chapter 11 Basic Statistics -- 11.1 Basic concepts and principles. -- 11.2 Histogram, frequency and probability11.3. Some basic properties of a distribution (mean, variance and standard deviation) -- 11.4. Hypothesis testing and confidence intervals for the mean -- 11.5 Statistical process control -- 11.6 Relationships between two or more variables -- 11.7. Simple linear regression. -- 11.8 Binomial distribution and tests -- 11.9 Contingency tables and homogeneity testing -- Chapter 12. Design of experiments for sensory and consumer data -- 12. 1. Introduction. -- 12.2. Important concepts and distinctions. -- 12.3. Full factorial designs -- 12.4. Fractional factorial designs - screening designs -- 12.5. Randomised blocks and incomplete block designs -- 12.6 Split-plot and nested designs -- 12.7 Power of experiments -- Chapter 13. ANOVA for sensory and consumer data -- 13.1 Introduction -- 13.2 One-way ANOVA -- 13.3 Single replicate two-way ANOVA -- 13.4 Two-way ANOVA with randomized replications Chapter 13.5 Multi-way ANOVA -- 13.6. ANOVA for fractional factorial designs. -- 13.7 Fixed and random effects in ANOVA: Mixed models. -- 13.8 Nested and split-plot models. Chapter 13.9 Post hoc testing -- Chapter 14. Principal Component Analysis -- 14.1 Interpretation of complex data sets by PCA 14.2 Data structures for the PCA -- 4.3 PCA - Description of the method -- 14.4. Projections and linear combinations. -- 14.5. The scores and loadings plots -- 14.6. Correlation loadings plot. -- 14.7 Standardisation -- 14.8 Calculations and missing values -- 14.9. Validation -- 14.10 Outlier diagnostics -- 14.11 Tucker-1 -- 14.12 The relation between PCA and factor analysis (FA) -- Chapter 15. Multiple regression, principal components regression and partial least squares regression. -- 15.1 Introduction. -- 15.2. Multivariate linear regression -- 15.3. The relation between ANOVA and regression analysis -- 15.4 Linear regression used for estimating polynomial models -- 15.5 Combining continuous and categorical variables. -- 15.6. Variable selection for multiple linear regression -- 15.7. Principal components regression (PCR) -- 15.8. Partial Least Squares (PLS) regression -- 15.9. Model validation - prediction performance -- 15.10. Model diagnostics and outlier detection -- 15.11 Discriminant analysis -- 15.12 Generalised linear models, logistic regression and multinomial regression -- Chapter 16. Cluster analysis - unsupervised classification -- 16.1 Introduction -- 16.2 Hierarchical clustering -- 16.3. Partitioning methods. -- 16.4. Cluster analysis for matrices. -- 17. Miscellaneous methodologies -- 17.1. Three-way analysis of sensory data -- 17.2. Relating three-way data to two-way data -- 17.3. Path modelling -- 17.4. MDS-multidimensional scaling Chapter 17.5 Analysing rank data -- 17.6. The L-PLS method -- 17.7. Missing value estimation -- Nomenclature, symbols and abbreviations -- Index. 330 $a"As we move further into the 21st Century, sensory and consumer studies continue to develop, playing an important role in food science and industry. These studies are crucial for understanding the relation between food properties on one side and human liking and buying behaviour on the other. This book by a group of established scientists gives a comprehensive, up-to-date overview of the most common statistical methods for handling data from both trained sensory panels and consumer studies of food. It presents the topic in two distinct sections: problem-orientated (Part I) and method orientated (Part II), making it to appropriate for people at different levels with respect to their statistical skills. This book succesfully makes a clear distinction between studies using a trained sensory panel and studies using consumers. Concentrates on experimental studies with focus on how sensory assessors or consumers perceive and assess various product properties. Focuses on relationships between methods and techniques and on considering all of them as special cases of more general statistical methodologies. It is assumed that the reader has a basic knowledge of statistics and the most important data collection methods within sensory and consumer science. This text is aimed at food scientists and food engineers working in research and industry, as well as food science students at master and PhD level. In addition, applied statisticians with special interest in food science will also find relevant information within the book"--$cProvided by publisher. 330 $a"This book will describe the most basic and used statistical methods for analysis of data from trained sensory panels and consumer panels with a focus on applications of the methods. It will start with a chapter discussing the differences and similarities between data from trained sensory and consumer tests"--$cProvided by publisher. 606 $aFood$xSensory evaluation 606 $aNew products 615 0$aFood$xSensory evaluation. 615 0$aNew products. 676 $a664/.07 700 $aNs$b Tormod$0144982 701 $aBrockhoff$b Per B$0520650 701 $aTomic$b Oliver$0520651 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911019389503321 996 $aStatistics for sensory and consumer science$9834584 997 $aUNINA