LEADER 01055cam0-22003851i-450- 001 990002866720403321 005 20060413113835.0 010 $a0-8039-5653-3 035 $a000286672 035 $aFED01000286672 035 $a(Aleph)000286672FED01 035 $a000286672 100 $a20030910d1995----km-y0itay50------ba 101 0 $aeng 102 $aUS 105 $ay-------001yy 200 1 $aInstitutions and organizations$fRichard W. Scott 210 $aThousand Oaks$cSAGE$d1995 215 $aXVI, 178 p.$d23 cm 225 1 $aFoundations for organizational science 610 0 $aOrganizzazione sociale 610 0 $aIstituzioni sociali 676 $a302.3'5 700 1$aScott,$bWilliam Richard$027660 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990002866720403321 952 $a1-7-625-TI$b5590$fECA 952 $aL2.76$b6252$fDECTS 952 $a10 ECON 16$bDIS 3647$fDINEL 959 $aECA 959 $aDINEL 959 $aDECTS 996 $aInstitutions and organizations$9415362 997 $aUNINA LEADER 00937nam0-22002891i-450 001 990005319530403321 005 20230301130342.0 035 $a000531953 035 $aFED01000531953 035 $a(Aleph)000531953FED01 035 $a000531953 100 $a19990530d1968----km-y0itay50------ba 101 0 $aita 105 $aa-------00--- 200 1 $aCoins of ancient Athens (Herderden Coin Room, Ashmolean Museum, Oxford) by C.M. Kraay 210 $aNewcastle upon Tyne$cCorbitt & Hunter$d1968 215 $aP. 39$dill.$d22 cm 225 1 $aMinerva Numismatic Handbooks;$v2 702 1$aKraay,$bColin Mackennal 710 0 $aAshmolean Museum$0168848 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990005319530403321 952 $aOPUSC. 02 (21)$bARCH. 17114$fFLFBC 959 $aFLFBC 996 $aCoins of ancient Athens (Herderden Coin Room, Ashmolean Museum, Oxford) by C.M. Kraay$9597001 997 $aUNINA LEADER 04157nam 2200589 a 450 001 9910437866303321 005 20200520144314.0 010 $a3-642-32199-2 024 7 $a10.1007/978-3-642-32199-3 035 $a(CKB)2670000000279624 035 $a(EBL)1030591 035 $a(OCoLC)819816608 035 $a(SSID)ssj0000798961 035 $a(PQKBManifestationID)11957475 035 $a(PQKBTitleCode)TC0000798961 035 $a(PQKBWorkID)10754297 035 $a(PQKB)11626766 035 $a(DE-He213)978-3-642-32199-3 035 $a(MiAaPQ)EBC1030591 035 $a(PPN)168321238 035 $a(EXLCZ)992670000000279624 100 $a20121109d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aNoncommutative Iwasawa main conjectures over totally real fields $eMunster, April 2011 /$fJohn Coates ... [et al.], editors 205 $a1st ed. 2013. 210 $aHeidelberg $cSpringer$d2013 215 $a1 online resource (215 p.) 225 0 $aSpringer proceedings in mathematics and statistics,$x2194-1009 ;$vv. 29 300 $aDescription based upon print version of record. 311 $a3-642-44335-4 311 $a3-642-32198-4 320 $aIncludes bibliographical references. 327 $aPreface -- John Coates, Dohyeong Kim: Introduction to the work of M. Kakde on the non-commutative main conjectures for totally real fields --  R. Sujatha: Reductions of the main conjecture -- Ted Chinburg, Georgios Pappas, Martin J. Taylor: The group logarithm past and present -- Peter Schneider, Otmar Venjakob:  K_1 of certain Iwasawa algebras, after Kakde -- Mahesh Kakde: Congruences between abelian p-adic zeta functions -- Otmar Venjakob: On the work of Ritter and Weiss in comparison with Kakde's approach --  Malte Witte: Noncommutative Main Conjectures of Geometric Iwasawa Theory. 330 $aThe algebraic techniques developed by Kakde will almost certainly lead eventually to major progress in the study of congruences between automorphic forms and the main conjectures of non-commutative Iwasawa theory for many motives. Non-commutative Iwasawa theory has emerged dramatically over the last decade, culminating in the recent proof of the non-commutative main conjecture for the Tate motive over a totally real p-adic Lie extension of a number field, independently by Ritter and Weiss on the one hand, and Kakde on the other. The initial ideas for giving a precise formulation of the non-commutative main conjecture were discovered by Venjakob, and were then systematically developed  in the subsequent papers by Coates-Fukaya-Kato-Sujatha-Venjakob and Fukaya-Kato. There was also parallel related work in this direction by Burns and Flach on the equivariant Tamagawa number conjecture. Subsequently, Kato discovered an important idea for studying the K_1 groups of non-abelian Iwasawa algebras in terms of the K_1 groups of the abelian quotients of these Iwasawa algebras. Kakde's proof is a beautiful development of these ideas of Kato, combined with an idea of Burns, and essentially reduces the study of the non-abelian main conjectures to abelian ones. The approach of Ritter and Weiss is more classical, and partly inspired by techniques of Frohlich and Taylor. Since many of the ideas in this book should eventually be applicable to other motives, one of its major aims is to provide a self-contained exposition of some of the main general themes underlying these developments. The present volume will be a valuable resource for researchers working in both Iwasawa theory and the theory of automorphic forms. 410 0$aSpringer Proceedings in Mathematics & Statistics,$x2194-1009 ;$v29 606 $aIwasawa theory 606 $aFinite fields (Algebra) 615 0$aIwasawa theory. 615 0$aFinite fields (Algebra) 676 $a512.74 701 $aCoates$b John$0777226 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910437866303321 996 $aNoncommutative Iwasawa main conjectures over totally real fields$94202929 997 $aUNINA