LEADER 00935cam2-2200325---450- 001 990005252080403321 005 20150401124452.0 010 $a84-7506-378-0 035 $a000525208 035 $aFED01000525208 035 $a(Aleph)000525208FED01 035 $a000525208 100 $a19990604d1993----km-y0itay50------ba 101 0 $aspa 102 $aES 105 $a--------001ay 200 1 $a<<4.: La >>Galatea$aPersiles y Sigismunda$fMiguel de Cervantes 210 $aMadrid$cTurner$d1993 215 $aXVII, 841 p.$d23 cm 461 0$1001000421928$12001$aObras completas$v4 676 $a863.3$v22$zita 700 1$aCervantes Saavedra,$bMiguel de$f<1547-1616>$0131561 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990005252080403321 952 $a863.3 CERV 1(4;4)$bBibl.23462$fFLFBC 959 $aFLFBC 996 $aPersiles y Sigismunda$9539038 996 $aGalatea$9102461 997 $aUNINA LEADER 04221nam 22006735 450 001 9910634038403321 005 20251113194848.0 010 $a3-031-21853-1 024 7 $a10.1007/978-3-031-21853-8 035 $a(MiAaPQ)EBC7156550 035 $a(Au-PeEL)EBL7156550 035 $a(CKB)25657527200041 035 $a(DE-He213)978-3-031-21853-8 035 $a(EXLCZ)9925657527200041 100 $a20221208d2022 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aPartial Differential Equations in Action $eFrom Modelling to Theory /$fby Sandro Salsa, Gianmaria Verzini 205 $a4th ed. 2022. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2022. 215 $a1 online resource (692 pages) 225 1 $aLa Matematica per il 3+2,$x2038-5757 ;$v147 311 08$aPrint version: Salsa, Sandro Partial Differential Equations in Action Cham : Springer International Publishing AG,c2023 9783031218521 320 $aIncludes bibliographical references and index. 327 $a1 Introduction -- 2 Diffusion -- 3 The Laplace Equation -- 4 Scalar Conservation Laws and First Order Equations -- 5 Waves and Vibration -- 6 Elements of Functional Analysis -- 7 Distributions and Sobolev Spaces -- 8 Variational Formulation of Elliptic Problems -- 9 Weak Formulation of Evolution Problems -- 10 More Advanced Topics -- 11 Systems of Conservation Laws -- Appendix A: Measures and Integrals -- Appendix B: Identities and Formulas. 330 $aThis work is an updated version of a book evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background for numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In the second part, chapters 6 to 10 concentrate on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear boundary and initial-boundary value problems, while Chapter 11 deals with vector-valued conservation laws, extending the theory developed in Chapter 4. The main differences with respect to the previous editions are: a new section on reaction diffusion models for population dynamics in a heterogeneous environment; several new exercises in almost all chapters; a general restyling and a reordering of the last chapters. The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. 410 0$aLa Matematica per il 3+2,$x2038-5757 ;$v147 606 $aDifferential equations 606 $aEngineering mathematics 606 $aEngineering$xData processing 606 $aFunctional analysis 606 $aMathematical physics 606 $aDifferential Equations 606 $aMathematical and Computational Engineering Applications 606 $aFunctional Analysis 606 $aMathematical Methods in Physics 615 0$aDifferential equations. 615 0$aEngineering mathematics. 615 0$aEngineering$xData processing. 615 0$aFunctional analysis. 615 0$aMathematical physics. 615 14$aDifferential Equations. 615 24$aMathematical and Computational Engineering Applications. 615 24$aFunctional Analysis. 615 24$aMathematical Methods in Physics. 676 $a381 676 $a515.353 700 $aSalsa$b S.$061750 702 $aVerzini$b Gianmaria 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910634038403321 996 $aPartial differential equations in action$9715363 997 $aUNINA