LEADER 01269nam--2200397---450- 001 990005964000203316 005 20140917145650.0 010 $a978-88-6036-999-4 035 $a000596400 035 $aUSA01000596400 035 $a(ALEPH)000596400USA01 035 $a000596400 100 $a20140917d2013----km-y0itay50------ba 101 $aita 102 $aIT 105 $a||||||||001yy 200 1 $aSe potessi scriverti ogni giorno$eLettere 1927-1943$fEmma e Giulio Turchi$ga cura di Gianfranco Porta$gpostfazione di Gioia Turchi 210 $aRoma$cDonzelli$d2013 215 $aXXXII, 286 p.$d24 cm 225 2 $aSaggi$iStoria e scienze sociali 410 0$12001$aSaggi$iStoria e scienze sociali 454 1$12001 600 1$aTurchi,$bPietro$xCarteggi [con] Turchi, Emma 676 $a945.0915092 702 1$aPORTA,$bGianfranco 702 1$aTURCHI,$bGioia 801 0$aIT$bsalbc$gISBD 912 $a990005964000203316 951 $aVI.3.A. 3611$b245823 L.M.$cVI.3.A.$d357157 959 $aBK 969 $aUMA 979 $aALESSANDRA$b90$c20140917$lUSA01$h1443 979 $aALESSANDRA$b90$c20140917$lUSA01$h1448 979 $aALESSANDRA$b90$c20140917$lUSA01$h1456 996 $aSe potessi scriverti ogni giorno$91070802 997 $aUNISA LEADER 01097cam0-22003611i-450 001 990004021310403321 005 20220930123826.0 035 $a000402131 035 $aFED01000402131 035 $a(Aleph)000402131FED01 035 $a000402131 100 $a19990604d1983----km-y0itay50------ba 101 0 $aeng 102 $aGB 105 $ay-------001yy 200 1 $a<>invention of tradition$fedited by Eric Hobsbwm and Terence Ranger 210 $aCambridge$cCambridge University Press$d1983 215 $a320 p.$d22 cm 225 1 $aPast and present publications 300 $aAltra classificazione 14/310 HOB 610 0 $aAntropologia culturale$aSaggi 610 0 $aCultura$aTradizione$aAspetti sociali 676 $a303.372$v21$zita 676 $a306.4 702 1$aHobsbawm,$bEric John$f<1917-2012> 702 1$aRanger,$bTerence Osborn$f<1929- > 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990004021310403321 952 $a303.372 HOB 1$bDIP.DISC.ST.363$fFLFBC 959 $aFLFBC 996 $aInvention of tradition$955626 997 $aUNINA LEADER 04720nam 22006615 450 001 9910299677503321 005 20200704165329.0 010 $a3-319-13239-3 024 7 $a10.1007/978-3-319-13239-6 035 $a(CKB)3710000000306180 035 $a(EBL)1967682 035 $a(SSID)ssj0001386260 035 $a(PQKBManifestationID)11883479 035 $a(PQKBTitleCode)TC0001386260 035 $a(PQKBWorkID)11349397 035 $a(PQKB)10222049 035 $a(DE-He213)978-3-319-13239-6 035 $a(MiAaPQ)EBC1967682 035 $a(PPN)183093798 035 $a(EXLCZ)993710000000306180 100 $a20141126d2015 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aOptimal Control of Stochastic Difference Volterra Equations $eAn Introduction /$fby Leonid Shaikhet 205 $a1st ed. 2015. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2015. 215 $a1 online resource (224 p.) 225 1 $aStudies in Systems, Decision and Control,$x2198-4182 ;$v17 300 $aDescription based upon print version of record. 311 $a3-319-13238-5 320 $aIncludes bibliographical references and index. 327 $aStochastic Difference Volterra Equations and Some Auxiliary Statements -- Optimal Control -- Successive Approximations to the Optimal Control -- Optimal and Quasioptimal Stabilization -- Optimal Estimation -- Optimal Control of Stochastic Difference Volterra Equations by Incomplete Information. 330 $aThis book showcases a subclass of hereditary systems, that is, systems with behaviour depending not only on their current state but also on their past history; it is an introduction to the mathematical theory of optimal control for stochastic difference Volterra equations of neutral type. As such, it will be of much interest to researchers interested in modelling processes in physics, mechanics, automatic regulation, economics and finance, biology, sociology and medicine for all of which such equations are very popular tools. The text deals with problems of optimal control such as meeting given performance criteria, and stabilization, extending them to neutral stochastic difference Volterra equations. In particular, it contrasts the difference analogues of solutions to optimal control and optimal estimation problems for stochastic integral Volterra equations with optimal solutions for corresponding problems in stochastic difference Volterra equations. Optimal Control of Stochastic Difference Volterra Equations commences with an historical introduction to the emergence of this type of equation with some additional mathematical preliminaries. It then deals with the necessary conditions for optimality in the control of the equations and constructs a feedback control scheme. The approximation of stochastic quasilinear Volterra equations with quadratic performance functionals is then considered. Optimal stabilization is discussed and the filtering problem formulated. Finally, two methods of solving the optimal control problem for partly observable linear stochastic processes, also with quadratic performance functionals, are developed. Integrating the author?s own research within the context of the current state-of-the-art of research in difference equations, hereditary systems theory and optimal control, this book is addressed to specialists in mathematical optimal control theory and to graduate students in pure and applied mathematics and control engineering. 410 0$aStudies in Systems, Decision and Control,$x2198-4182 ;$v17 606 $aControl engineering 606 $aSystem theory 606 $aCalculus of variations 606 $aControl and Systems Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/T19010 606 $aSystems Theory, Control$3https://scigraph.springernature.com/ontologies/product-market-codes/M13070 606 $aCalculus of Variations and Optimal Control; Optimization$3https://scigraph.springernature.com/ontologies/product-market-codes/M26016 615 0$aControl engineering. 615 0$aSystem theory. 615 0$aCalculus of variations. 615 14$aControl and Systems Theory. 615 24$aSystems Theory, Control. 615 24$aCalculus of Variations and Optimal Control; Optimization. 676 $a515.64 676 $a519 676 $a620 676 $a629.8 700 $aShaikhet$b Leonid$4aut$4http://id.loc.gov/vocabulary/relators/aut$0720644 906 $aBOOK 912 $a9910299677503321 996 $aOptimal Control of Stochastic Difference Volterra Equations$91412173 997 $aUNINA