LEADER 00787nam0-22002771i-450- 001 990003214380403321 005 20080507092530.0 035 $a000321438 035 $aFED01000321438 035 $a(Aleph)000321438FED01 035 $a000321438 100 $a20030910d1988----km-y0itay50------ba 101 0 $aeng 102 $aUS 200 1 $aTasks and methods in development ethics$fDenis Goulet 210 $aNotre Dame (In.)$cKellogg Institute$d1988 215 $a29 p.$d28 cm 225 1 $aWorking Papers$fKellog Institute$v106 700 1$aGoulet,$bDenis$0125704 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990003214380403321 952 $aPaper 50/88.106$fSES 959 $aSES 996 $aTasks and methods in development ethics$9453983 997 $aUNINA LEADER 02832nam 2200733 a 450 001 9910968559603321 005 20200520144314.0 010 $a9786612467363 010 $a9781282467361 010 $a1282467360 010 $a9781551523002 010 $a1551523000 035 $a(CKB)2550000000004428 035 $a(EBL)478394 035 $a(OCoLC)244770702 035 $a(SSID)ssj0000356601 035 $a(PQKBManifestationID)11266179 035 $a(PQKBTitleCode)TC0000356601 035 $a(PQKBWorkID)10350260 035 $a(PQKB)11516676 035 $a(Au-PeEL)EBL478394 035 $a(CaPaEBR)ebr10308829 035 $a(VaAlCD)20.500.12592/jmtzvf 035 $a(schport)gibson_crkn/2009-12-01/4/408962 035 $a(MiAaPQ)EBC478394 035 $a(Perlego)3046958 035 $a(EXLCZ)992550000000004428 100 $a20070926d2007 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aAnarchy and art $efrom the Paris Commune to the fall of the Berlin Wall /$fAllan Antliff 205 $a1st ed. 210 $aVancouver $cArsenal Pulp Press$dc2007 215 $a1 online resource (223 p.) 300 $aDescription based upon print version of record. 311 08$a9781551522180 311 08$a1551522187 320 $aIncludes bibliographical references (p. 199-208) and index. 327 $aContents; 9 Acknowledgments; 11 Introduction; Chapter 1 17 A Beautiful Dream: Courbet's Realism and the Paris Commune of 1871; Chapter 2 37 Wandering: Neo-Impressionists and Depictions of the Dispossessed; Chapter 3 49 Obscenity: The Advent of Dada in New York; Chapter 4 71 True Creators: Russian Artists of the Anarchist Revolution; Chapter 5 97 Death to Art!: The Post-Anarchist Aftermath; Chapter 6 113 Gay Anarchy: Sexual Politics in the Crucible of McCarthyism; Chapter 7 133 Breakout from the Prison House of Modernism: An Interview with Susan Simensky Bietila 327 $aChapter 8 181 With Open Eyes: Anarchism and the Fall of the Berlin Wall 199 Bibliography; 209 Index 330 $aA fascinating study of anarchist artists confronting pivotal historical moments over the past 140 years. 606 $aArt$xPolitical aspects 606 $aAnarchism in art 606 $aArt and society 606 $aArtists$xPolitical activity 606 $aAnarchism 615 0$aArt$xPolitical aspects. 615 0$aAnarchism in art. 615 0$aArt and society. 615 0$aArtists$xPolitical activity. 615 0$aAnarchism. 676 $a701/.03 676 $a700.103 700 $aAntliff$b Allan$01811619 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910968559603321 996 $aAnarchy and art$94363611 997 $aUNINA LEADER 12095nam 22006493 450 001 9911019889203321 005 20231118060237.0 010 $a9781394166961 010 $a1394166966 010 $a9781394166985 010 $a1394166982 010 $a9781394166978 010 $a1394166974 035 $a(MiAaPQ)EBC30949527 035 $a(Au-PeEL)EBL30949527 035 $a(CKB)28861504400041 035 $a(Exl-AI)30949527 035 $a(OCoLC)1409702699 035 $a(Perlego)4279581 035 $a(EXLCZ)9928861504400041 100 $a20231118d2024 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAdvanced Materials and Manufacturing Techniques for Biomedical Applications 205 $a1st ed. 210 1$aNewark :$cJohn Wiley & Sons, Incorporated,$d2024. 210 4$dİ2023. 215 $a1 online resource (458 pages) 311 08$aPrint version: Prasad, Arbind Advanced Materials and Manufacturing Techniques for Biomedical Applications Newark : John Wiley & Sons, Incorporated,c2024 9781394166190 327 $aCover -- Title Page -- Copyright Page -- Dedication Page -- Contents -- Preface -- Acknowledgement -- Section I: Advanced Materials for Biomedical Applications -- Chapter 1 Introduction to Next-Generation Materials for Biomedical Applications -- 1.1 Introduction -- 1.2 Advanced Functional Materials -- 1.3 Market and Requirement of Next-Generation Materials -- 1.4 Metals and Polymeric Biomaterials -- 1.5 Bioabsorbable Biomaterials -- 1.6 Processing of Bioabsorbable Polymeric Biomaterials -- 1.7 Application of Next-Generation Materials in Biomedical Applications -- 1.8 Latest Status of Next Generation Materials in Biomedical Applications -- 1.8.1 Bioabsorbable Devices for Bone Tissue Engineering -- 1.9 Bioresorbable Devices for Skin Tissue Engineering -- 1.10 Challenges and Perspectives -- 1.11 Conclusion -- References -- Chapter 2 Advanced Materials for Surgical Tools and Biomedical Implants -- 2.1 Introduction -- 2.2 Application of Bioengineering to Healthcare -- 2.3 Application in Musculoskeletal and Orthopedic Medicines -- 2.4 Application as a Disposable Medical Device -- 2.5 Application as an Implantable Biosensor -- 2.6 Conclusions -- References -- Chapter 3 Insights into Multifunctional Smart Hydrogels in Wound Healing Applications -- 3.1 Introduction -- 3.2 Architecture of Fabricated Hydrogels -- 3.3 Bactericidal Effect on Wound Repair -- 3.3.1 Historical Perspective -- 3.3.2 Microbial Influence on Wound Healing -- 3.3.3 Wound Tissue Healing Strategies: Case Study -- 3.3.4 Degradation of Wound Healing Factors -- 3.3.5 pH and Wound Healing: Impact of Bacteria -- 3.4 New Frontiers of Hydrogels in Wound Dressing Applications -- 3.4.1 Hemostatic Hydrogel as Wound Dressing -- 3.4.2 Anti-Oxidant and Anti-Inflammatory Hydrogel Wound Dressing -- 3.4.3 Antibacterial Hydrogel Wound Healing -- 3.4.4 Self-Healing Hydrogel Wound Dressing. 327 $a3.4.5 Conductive Hydrogel Wound Dressing for Wound Monitoring -- 3.4.6 Chronic Wound Dressing -- 3.5 Conclusion and Future Perspectives -- References -- Chapter 4 Natural Resource-Based Nanobiomaterials: A Sustainable Material for Biomedical Applications -- 4.1 Introduction -- 4.2 Natural Resource-Based Biopolymer -- 4.2.1 Cellulose -- 4.2.2 Lignin -- 4.2.3 Starch -- 4.2.4 Chitosan -- 4.2.5 Silk -- 4.3 Extraction of Nature Resource-Based Nanomaterials -- 4.3.1 Extraction of Cellulose-Based Nanostructures -- 4.3.2 Extraction of Lignin-Based Nanostructures -- 4.3.3 Extraction of Starch-Based Nanostructures -- 4.3.4 Extraction of Chitosan-Based Nanostructures -- 4.3.5 Extraction of Silk Nanostructures -- 4.4 Biomedical Applications of Nature Resource-Based Nanomaterials and Their Nanobiocomposites -- 4.4.1 Nanocellulose in Biomedical Application -- 4.4.2 Nanolignin in Biomedical Application -- 4.4.3 Nanostarch in Biomedical Application -- 4.4.4 Nanochitosan in Biomedical Application -- 4.4.5 Nanosilk in Biomedical Application -- 4.5 Other Applications -- References -- Chapter 5 Biodegradable Magnesium Composites for Orthopedic Applications -- 5.1 Introduction -- 5.1.1 Biomaterials for Bone Implants -- 5.1.2 Magnesium: A Smart Material -- 5.1.3 Materials and Methods -- 5.1.4 Design Requirements for Mg-Based Composites -- 5.1.5 Types of Reinforcements -- 5.2 Materials and Methods -- 5.2.1 Powder Processing Route -- 5.2.2 Casting Route -- 5.3 Results and Discussion -- 5.3.1 Biodegradation Study -- 5.3.2 Biocompatibility -- 5.3.3 In Vivo Assessment of the Nanocomposites for Tissue Compatibility -- 5.4 Conclusion and Future Outlook -- References -- Chapter 6 New Frontiers of Bioinspired Polymer Nanocomposite for Biomedical Applications -- 6.1 Introduction -- 6.1.1 Polymers Used in Biomedical Applications -- 6.1.2 Graphene-Polymer Nanocomposites. 327 $a6.2 Methods to Prepare Graphene-Based Polymer Nanocomposites -- 6.3 Magnetic Material - Polymer Nanocomposites -- 6.3.1 Organization of Magnetic Polymer Nanocomposites -- 6.3.2 Residues and Suspensions -- 6.3.3 Tridimensional Solids -- 6.3.4 High-Permeability Materials for the Microwave -- 6.3.5 Piezoelectric Materials -- 6.3.6 Multifunctional Materials -- 6.3.6.1 Transparent Magnetic Materials -- 6.3.6.2 Luminescent Magnetic Materials -- 6.4 Nanostructured Composites -- 6.5 Conclusion and Future Trends -- References -- Chapter 7 Nanohydroxyapatite-Based Composite Materials and Processing -- 7.1 Introduction -- 7.2 Biomaterials -- 7.3 Types of Biomaterials -- 7.3.1 Polymers -- 7.3.2 Composites -- 7.4 Structure of Hydroxyapatite -- 7.5 Nanohydroxyapatite -- 7.5.1 Nanohydroxyapatite/Polymer Composite -- 7.5.2 Nanohydroxyapatite/Poly (Vinyl Alcohol) Composite -- 7.5.3 Nanohydroxyapatite/Sodium Alginate Composite -- 7.5.4 Nanohydroxyapatite/Chitosan Composite -- 7.5.5 Nanohydroxyapatite/Gelatin Composite -- 7.5.6 Nanohydroxyapatite/Chitosan-Gelatin Composite -- 7.5.7 Nanohydroxyapatite-Polylactic Acid Nanocomposites -- 7.6 Cancer Detection and Cell Imaging -- 7.6.1 Size and Morphology -- 7.7 Conclusion -- References -- Chapter 8 Self-Healing Materials and Hydrogel for Biomedical Application -- 8.1 Introduction -- 8.2 Self-Healing Hydrogels -- 8.3 Mechanism of Self-Healing in Hydrogels -- 8.3.1 Physically Cross-Linked Self-Healing Hydrogels -- 8.3.1.1 Hydrogen Bonding -- 8.3.1.2 Ionic Interactions -- 8.3.1.3 Host-Guest Interactions -- 8.3.1.4 Hydrophobic Interactions -- 8.3.2 Chemically Self-Healing Hydrogels -- 8.3.2.1 Imine Bond -- 8.3.2.2 Diel-Alder Reaction -- 8.3.2.3 Disulphide Bond -- 8.3.2.4 Boronate-Diol Complexation -- 8.4 Application of Self-Healing Hydrogel in Biomedical Application -- 8.4.1 Drug Delivery -- 8.4.2 Tissue Engineering Application. 327 $a8.4.2.1 Wound Healing -- 8.4.2.2 Neural Tissue Engineering -- 8.4.2.3 Bone Tissue Engineering -- 8.5 Conclusion and Future Prospects -- References -- Section II: Advanced Manufacturing Techniques for Biomedical Applications -- Chapter 9 Biomimetic and Bioinspired Composite Processing for Biomedical Applications -- 9.1 Introduction -- 9.2 Synthesis of Biomimetic and Bioinspired Composite -- 9.2.1 3D (Three-Dimensional) Printing -- 9.2.2 Synthesis of Bioinspired Nanomaterials -- 9.3 Biomaterials for Biomedical Applications -- 9.3.1 Biomaterials-Based Cell Therapy -- 9.3.2 Biomaterials for Cancer Diagnostics -- 9.3.3 Biomaterials for Vaccine Development -- 9.4 Bioinspired Materials -- 9.4.1 One-Dimensional Bioinspired Material -- 9.4.2 Two-Dimensional (2D) Bioinspired Materials -- 9.4.3 Three Dimensional (3D) Bioinspired Materials -- 9.5 Biomimetic Drug Delivery Systems -- 9.5.1 Cell Membrane-Based Drug Delivery System -- 9.5.2 Lipoprotein-Based Drug Delivery System -- 9.6 Artificial Organs -- 9.6.1 Artificial Kidney -- 9.6.2 Artificial Liver -- 9.6.3 Artificial Pancreas -- 9.6.4 Artificial Lung -- 9.7 Neuroprosthetics -- 9.7.1 Sensory Prosthetics -- 9.7.1.1 Auditory Prosthetics -- 9.7.1.2 Visual Prosthetics -- 9.7.2 Motor Prosthetics -- 9.7.3 Cognitive Prosthetics -- 9.8 Conclusion -- References -- Chapter 10 3D Printing in Drug Delivery and Healthcare -- 10.1 Introduction -- 10.2 3D Printing in Healthcare Technologies -- 10.3 Four Dimensions Printing (4D) -- 10.4 Transformation Process and Materials -- 10.4.1 3D Bioprinting -- 10.4.1.1 Bioinks -- 10.4.2 Bioceramics -- 10.4.3 Synthetic Biopolymers -- 10.5 3D Printing's Pharmaceutical Potentials -- 10.5.1 Personalization -- 10.5.2 Personalized Therapy -- 10.6 Drug Administration Routes -- 10.6.1 Transdermal Route -- 10.6.2 Ocular Route -- 10.6.3 Rectal and Vaginal Routes. 327 $a10.6.4 Pulmonary Drug Delivery -- 10.7 Custom Design 3D Printed Pharmaceuticals -- 10.8 Excipient Selection for 3D Printing Custom Designs -- 10.9 Customized Medicating of Drugs -- 10.10 Devices for Personalized Topical Treatment -- 10.10.1 Oral Solid Dosage Forms -- 10.10.2 Semisolid Extrusion (EXT) and Inkjet Printing -- 10.10.3 Stencil Printing -- 10.10.4 Implants -- 10.10.5 Tissue Engineering -- 10.10.6 Regenerative Medicine -- 10.10.7 Scaffoldings -- 10.10.8 Organ Printing -- 10.11 Conclusion -- References -- Chapter 11 3D Printing in Biomedical Applications: Techniques and Emerging Trends -- 11.1 Introduction -- 11.2 3D Printing Technologies -- 11.2.1 Digital Model -- 11.2.2 Inkjet-Based 3D Printing -- 11.2.3 Extrusion-Based 3D Printing -- 11.2.4 Laser-Based 3D Printing -- 11.2.5 Bioplotting -- 11.2.6 Fused Deposition Modeling (FDM) -- 11.3 Materials for 3D Printing -- 11.3.1 Hydrogel -- 11.3.2 Polymers (Melt Cured) -- 11.3.3 Metallic Substances -- 11.3.4 Ceramic Substances -- 11.3.5 Living Cells -- 11.4 Biomedical Applications: Recent Trends of 3D-Printing -- 11.4.1 Skin -- 11.4.2 Bone and Dentistry -- 11.4.3 Tissue -- 11.4.4 Drug Delivery -- 11.4.5 Other Applications -- 11.5 Challenges and Opportunities -- 11.6 Conclusion -- Acknowledgements -- References -- Chapter 12 Self-Sustained Nanobiomaterials: Innovative Materials for Biomedical Applications -- 12.1 Introduction -- 12.1.1 Classification of Nanobiomaterials -- 12.1.2 Composition -- 12.1.3 Dimensionality -- 12.1.4 Morphology -- 12.2 Nanobiomaterials Applications -- 12.2.1 Drug Deliverance -- 12.2.2 Oncology -- 12.2.3 Diagnostics -- 12.2.4 Application in Tissue Engineering -- 12.2.5 Antifouling and Antimicrobial Nanobiomaterials -- 12.3 Challenge in the Clinical Rendition of Nanobiomaterials -- 12.3.1 Nanotoxicity -- 12.3.2 Regulatory Considerations -- 12.3.3 Commercialization. 327 $a12.4 Conclusion and Future Directions. 330 $aThis book explores advanced materials and manufacturing techniques specifically designed for biomedical applications. Edited by Arbind Prasad, Ashwani Kumar, and Manoj Gupta, it delves into the development and utilization of materials such as bioabsorbable biomaterials, smart hydrogels, biodegradable magnesium composites, and bioinspired polymer nanocomposites. The text highlights their applications in surgical tools, wound healing, orthopedic implants, and tissue engineering. It also covers innovative manufacturing techniques like 3D printing and biomimetic processing. Aimed at engineers, researchers, and health professionals, the book serves as a comprehensive resource on the latest advancements in biomedical materials and their implications for healthcare.$7Generated by AI. 606 $aBiomedical materials$7Generated by AI 606 $aTissue engineering$7Generated by AI 615 0$aBiomedical materials 615 0$aTissue engineering 676 $a610.28 700 $aPrasad$b Arbind$01837254 701 $aKumar$b Ashwani$0318129 701 $aGupta$b Manoj$0522031 701 $aPrasad$b Arbind$01837254 701 $aKumar$b Ashwani$0318129 701 $aGupta$b Manoj$0522031 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911019889203321 996 $aAdvanced Materials and Manufacturing Techniques for Biomedical Applications$94415958 997 $aUNINA