LEADER 00959nam0-22002771i-450- 001 990003208230403321 035 $a000320823 035 $aFED01000320823 035 $a(Aleph)000320823FED01 035 $a000320823 100 $a20000920d--------km-y0itay50------ba 101 0 $aita 102 $aIT 200 1 $aStructural Analysis of Vector Error Correction Models with Exogenous I(1) Variables$fM. Hashem Pesaran, Yongcheol Shin and Richard J. Smith 225 1 $aDAE Working Papers$eAmalgamated Series$fDepartment of Applied Economics, University of Cambridge$v9706 702 1$aPesaran,$bMohammad Hashem$f<1946- > 702 1$aShin,$bYongcheol 702 1$aSmith,$bRichard J. 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990003208230403321 952 $aPaper$fSES 959 $aSES 996 $aStructural Analysis of Vector Error Correction Models with Exogenous I(1) Variables$9454101 997 $aUNINA DB $aING01 LEADER 00832nam a2200229 a 4500 001 991001795359707536 008 030926s2003 it 000 0 ita d 020 $a8804512016 035 $ab12198237-39ule_inst 040 $aDip.to Filosofia$bita 100 1 $aOreglio, Flavio$0451740 245 10$aBis :$bnuovi momenti catartici /$cFlavio Oreglio ; prefazione di Maurizio Costanzo 260 $aMilano :$bMondadori,$c2003 300 $a169 p. :$bill. ;$c19 cm 440 0$aBiblioteca umoristica Mondadori 700 1 $aCostanzo, Maurizio 907 $a.b12198237$b21-09-06$c26-09-03 912 $a991001795359707536 945 $aLE005 302 ORE01. 01$g1$i2005000139420$lle005$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i12572214$z26-09-03 996 $aBis$9157422 997 $aUNISALENTO 998 $ale005$b - - $cm$d- $e-$fita$git $h0$i0 LEADER 05395nam 2200649 a 450 001 9910779068103321 005 20230802004649.0 010 $a981-4366-85-4 035 $a(CKB)2550000000087657 035 $a(EBL)846133 035 $a(SSID)ssj0000734525 035 $a(PQKBManifestationID)11465252 035 $a(PQKBTitleCode)TC0000734525 035 $a(PQKBWorkID)10723851 035 $a(PQKB)10220880 035 $a(MiAaPQ)EBC846133 035 $a(WSP)00008266 035 $a(Au-PeEL)EBL846133 035 $a(CaPaEBR)ebr10529360 035 $a(CaONFJC)MIL498438 035 $a(OCoLC)877768010 035 $a(EXLCZ)992550000000087657 100 $a20120210d2012 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aAsympototic behavior of generalized functions$b[electronic resource] /$fSteven Pilipovic?, Bogoljub Stankovic?, Jasson Vindas 210 $aSingapore $cWorld Scientific$dc2012 215 $a1 online resource (309 p.) 225 1 $aSeries on analysis, applications and computation,$x1793-4702 ;$vv. 5 300 $aDescription based upon print version of record. 311 $a981-4366-84-6 320 $aIncludes bibliographical references (p. 283-292) and index. 327 $aPreface; Contents; I. Asymptotic Behavior of Generalized Functions; 0 Preliminaries; 1 S-asymptotics in F'g; 1.1 Definition; 1.2 Characterization of comparison functions and limits; 1.3 Equivalent definitions of the S-asymptotics in F'; 1.4 Basic properties of the S-asymptotics; 1.5 S-asymptotic behavior of some special classes of generalized functions; 1.5.1 Examples with regular distributions; 1.5.2 Examples with distributions in subspaces of D'; 1.5.3 S-asymptotics of ultradistributions and Fourier hyperfunctions - Comparisons with the S-asymptotics of distributions 327 $a1.6 S-asymptotics and the asymptotics of a function1.7 Characterization of the support of T F'; 1.8 Characterization of some generalized function spaces; 1.9 Structural theorems for S-asymptotics in F'; 1.10 S-asymptotic expansions in F'g; 1.10.1 General definitions and assertions; 1.10.2 S-asymptotic Taylor expansion; 1.11 S-asymptotics in subspaces of distributions; 1.12 Generalized S-asymptotics; 2 Quasi-asymptotics in F'; 2.1 Definition of quasi-asymptotics at infinity over a cone; 2.2 Basic properties of quasi-asymptotics over a cone 327 $a2.3 Quasi-asymptotic behavior at infinity of some generalized functions2.4 Equivalent definitions of quasi-asymptotics at infinity; 2.5 Quasi-asymptotics as an extension of the classical asymptotics; 2.6 Relations between quasi-asymptotics in D'(R) and S'(R); 2.7 Quasi-asymptotics at ±; 2.8 Quasi-asymptotics at the origin; 2.9 Quasi-asymptotic expansions; 2.10 The structure of quasi-asymptotics. Up-to-date results in one dimension; 2.10.1 Remarks on slowly varying functions; 2.10.2 Asymptotically homogeneous functions 327 $a2.10.3 Relation between asymptotically homogeneous functions and quasi-asymptotics2.10.4 Associate asymptotically homogeneous functions; 2.10.5 Structural theorems for negative integral degrees. The general case; 2.11 Quasi-asymptotic extension; 2.11.1 Quasi-asymptotics at the origin in D'(R) and S'(R); 2.11.2 Quasi-asymptotic extension problem in D'(0, ); 2.11.3 Quasi-asymptotics at infinity and spaces V'ß (R); 2.12 Quasi-asymptotic boundedness; 2.13 Relation between the S-asymptotics and quasi-asymptotics at; II. Applications of the Asymptotic Behavior of Generalized Functions 327 $a3 Asymptotic behavior of solutions to partial differential equations3.1 S-asymptotics of solutions; 3.2 Quasi-asymptotics of solutions; 3.3 S-asymptotics of solutions to equations with ultra-differential or local operators; 4 Asymptotics and integral transforms; 4.1 Abelian type theorems; 4.1.1 Transforms with general kernels; 4.1.2 Special integral transforms; 4.2 Tauberian type theorems; 4.2.1 Convolution type transforms in spaces of distributions; 4.2.2 Convolution type transforms in other spaces of generalized functions; 4.2.3 Integral transforms of Mellin convolution type 327 $a4.2.4 Special integral transforms 330 $aThe asymptotic analysis has obtained new impulses with the general development of various branches of mathematical analysis and their applications. In this book, such impulses originate from the use of slowly varying functions and the asymptotic behavior of generalized functions. The most developed approaches related to generalized functions are those of Vladimirov, Drozhinov and Zavyalov, and that of Kanwal and Estrada. The first approach is followed by the authors of this book and extended in the direction of the S-asymptotics. The second approach - of Estrada, Kanwal and Vindas - is related 410 0$aSeries on analysis, applications and computation ;$vv. 5. 606 $aAsymptotic expansions 615 0$aAsymptotic expansions. 676 $a515.23 676 $a515.782 700 $aPilipovic?$b Stevan$01551420 701 $aStankovic?$b Bogoljub$f1924-$01551421 701 $aVindas$b Jasson$01101708 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910779068103321 996 $aAsympototic behavior of generalized functions$93810911 997 $aUNINA