LEADER 00664nam0-22002411i-450- 001 990002639820403321 035 $a000263982 035 $aFED01000263982 035 $a(Aleph)000263982FED01 035 $a000263982 100 $a20000920d1955----km-y0itay50------ba 101 0 $aENG 200 1 $aAubenhaudelskolkulation Vol I$fVormbaurm 210 $aWiesbaden$cBetribswsthaftliden Verlag-Gabler$d1955 700 1$aVormbaurm,$bH$0369772 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990002639820403321 952 $a11-1-15-RA$bs.i.$fECA 959 $aECA 996 $aAubenhaudelskolkulation Vol I$9431371 997 $aUNINA DB $aING01 LEADER 00906nam0-22002891i-450 001 9911031077203321 005 20251008144616.0 035 $a000253707 035 $aFED01000253707 035 $a(Aleph)000253707FED01 100 $a20000920d1996----km-y0itay50------ba 101 0 $aeng 102 $aIT 200 1 $aNonsymmetric correspondence analysis for three-way contingency tables$fR. Lombardo, A. Carlier, L. D'Ambra 210 $a[S.l.$cs.n.]$d[1996] 215 $a59-80 p.$d24 cm 300 $aEstratto da: Methodologica, n. 4 (1996) 700 1$aLombardo,$bR.$01850430 701 1$aD'Ambra,$bLuigi$0367573 701 1$aCarlier,$bA.$01850431 801 0$aIT$bUNINA$gREICAT$2UNIMARC 901 $aBK 912 $a9911031077203321 952 $a1-9-196-TI$bs.i.$fECA 959 $aECA 996 $aNonsymmetric correspondence analysis for three-way contingency tables$94443484 997 $aUNINA