LEADER 07967oam 2200529 450 001 9910150205003321 005 20230807204833.0 010 $a0-273-77433-6 035 $a(CKB)2670000000592848 035 $a(MiAaPQ)EBC5173844 035 $a(MiAaPQ)EBC5175991 035 $a(MiAaPQ)EBC5832507 035 $a(MiAaPQ)EBC5138445 035 $a(MiAaPQ)EBC6399985 035 $a(Au-PeEL)EBL5138445 035 $a(OCoLC)1024246541 035 $a(EXLCZ)992670000000592848 100 $a20210428d2015 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aFinite element analysis $etheory and application with ANSYS /$fSaeed Moaveni 205 $aFourth, Global edition. 210 1$aHarlow, England :$cPearson,$d[2015] 210 4$d©2015 215 $a1 online resource (928 pages) $cillustrations 300 $aIncludes index. 311 $a0-273-77430-1 311 $a1-322-88300-9 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $aCover -- Title -- Copyright -- Contents -- Preface -- Acknowledgments -- 1 Introduction -- 1.1 Engineering Problems -- 1.2 Numerical Methods -- 1.3 A Brief History of the Finite Element Method and Ansys -- 1.4 Basic Steps in the Finite Element Method -- 1.5 Direct Formulation -- 1.6 Minimum Total Potential Energy Formulation -- 1.7 Weighted Residual Formulations -- 1.8 Verification of Results -- 1.9 Understanding the Problem -- Summary -- References -- Problems -- 2 Matrix Algebra -- 2.1 Basic Definitions -- 2.2 Matrix Addition or Subtraction -- 2.3 Matrix Multiplication -- 2.4 Partitioning of a Matrix -- 2.5 Transpose of a Matrix -- 2.6 Determinant of a Matrix -- 2.7 Solutions of Simultaneous Linear Equations -- 2.8 Inverse of a Matrix -- 2.9 Eigenvalues and Eigenvectors -- 2.10 Using Matlab to Manipulate Matrices -- 2.11 Using Excel to Manipulate Matrices -- Summary -- References -- Problems -- 3 Trusses -- 3.1 Definition of a Truss -- 3.2 Finite Element Formulation -- 3.3 Space Trusses -- 3.4 Overview of the Ansys Program -- 3.5 Examples Using Ansys -- 3.6 Verification of Results -- Summary -- References -- Problems -- 4 Axial Members, Beams, and Frames -- 4.1 Members Under Axial Loading -- 4.2 Beams -- 4.3 Finite Element Formulation of Beams -- 4.4 Finite Element Formulation of Frames -- 4.5 Three-Dimensional Beam Element -- 4.6 An Example Using Ansys -- 4.7 Verification of Results -- Summary -- References -- Problems -- 5 One-Dimensional Elements -- 5.1 Linear Elements -- 5.2 Quadratic Elements -- 5.3 Cubic Elements -- 5.4 Global, Local, and Natural Coordinates -- 5.5 Isoparametric Elements -- 5.6 Numerical Integration: Gauss-Legendre Quadrature -- 5.7 Examples of One-Dimensional Elements in Ansys -- Summary -- References -- Problems -- 6 Analysis of One-Dimensional Problems -- 6.1 Heat Transfer Problems -- 6.2 A Fluid Mechanics Problem. 327 $a6.3 An Example Using Ansys -- 6.4 Verification of Results -- Summary -- References -- Problems -- 7 Two-Dimensional Elements -- 7.1 Rectangular Elements -- 7.2 Quadratic Quadrilateral Elements -- 7.3 Linear Triangular Elements -- 7.4 Quadratic Triangular Elements -- 7.5 Axisymmetric Elements -- 7.6 Isoparametric Elements -- 7.7 Two-Dimensional Integrals: Gauss-Legendre Quadrature -- 7.8 Examples of Two-Dimensional Elements in Ansys -- Summary -- References -- Problems -- 8 More Ansys -- 8.1 Ansys Program -- 8.2 Ansys Database and Files -- 8.3 Creating a Finite Element Model with Ansys: Preprocessing -- 8.4 h-Method Versus p-Method -- 8.5 Applying Boundary Conditions, Loads, and the Solution -- 8.6 Results of Your Finite Element Model: Postprocessing -- 8.7 Selection Options -- 8.8 Graphics Capabilities -- 8.9 Error-Estimation Procedures -- 8.10 An Example Problem -- Summary -- References -- 9 Analysis of Two-Dimensional Heat Transfer Problems -- 9.1 General Conduction Problems -- 9.2 Formulation with Rectangular Elements -- 9.3 Formulation with Triangular Elements -- 9.4 Axisymmetric Formulation of Three-Dimensional Problems -- 9.5 Unsteady Heat Transfer -- 9.6 Conduction Elements Used by Ansys -- 9.7 Examples Using Ansys -- 9.8 Verification of Results -- Summary -- References -- Problems -- 10 Analysis of Two-Dimensional Solid Mechanics Problems -- 10.1 Torsion of Members with Arbitrary Cross-Section Shape -- 10.2 Plane-Stress Formulation -- 10.3 Isoparametric Formulation: Using a Quadrilateral Element -- 10.4 Axisymmetric Formulation -- 10.5 Basic Failure Theories -- 10.6 Examples Using Ansys -- 10.7 Verification of Results -- Summary -- References -- Problems -- 11 Dynamic Problems -- 11.1 Review of Dynamics -- 11.2 Review of Vibration of Mechanical and Structural Systems -- 11.3 Lagrange's Equations. 327 $a11.4 Finite Element Formulation of Axial Members -- 11.5 Finite Element Formulation of Beams and Frames -- 11.6 Examples Using Ansys -- Summary -- References -- Problems -- 12 Analysis of Fluid Mechanics Problems -- 12.1 Direct Formulation of Flow Through Pipes -- 12.2 Ideal Fluid Flow -- 12.3 Groundwater Flow -- 12.4 Examples Using Ansys -- 12.5 Verification of Results -- Summary -- References -- Problems -- 13 Three-Dimensional Elements -- 13.1 The Four-NodeTetrahedral Element -- 13.2 Analysis of Three-Dimensional Solid Problems Using Four-NodeTetrahedral Elements -- 13.3 The Eight-Node Brick Element -- 13.4 The Ten-Node Tetrahedral Element -- 13.5 The Twenty-Node Brick Element -- 13.6 Examples of Three-Dimensional Elements in Ansys -- 13.7 Basic Solid-Modeling Ideas -- 13.8 A Thermal Example Using Ansys -- 13.9 A Structural Example Using Ansys -- Summary -- References -- Problems -- 14 Design and Material Selection -- 14.1 Engineering Design Process -- 14.2 Material Selection -- 14.3 Electrical, Mechanical, and Thermophysical Properties of Materials -- 14.4 Common Solid Engineering Materials -- 14.5 Some Common Fluid Materials -- Summary -- References -- Problems -- 15 Design Optimization -- 15.1 Introduction to Design Optimization -- 15.2 The Parametric Design Language of Ansys -- 15.3 Examples of Batch Files -- Summary -- References -- Problems -- Appendix A Mechanical Properties of Some Materials -- Appendix B Thermophysical Properties of Some Materials -- Appendix C Properties of Common Line and Area Shapes -- Appendix D Geometrical Properties of Structural Steel Shapes -- Appendix E Conversion Factors -- Appendix F An Introduction to MATLAB -- Index. 330 $aFor courses in Finite Element Analysis, offered in departments of Mechanical or Civil and Environmental Engineering.   While many good textbooks cover the theory of finite element modeling, Finite Element Analysis: Theory and Application with ANSYS is the only text available that incorporates ANSYS as an integral part of its content. Moaveni presents the theory of finite element analysis, explores its application as a design/modeling tool, and explains in detail how to use ANSYS intelligently and effectively.   Teaching and Learning Experience This program will provide a better teaching and learning experience-for you and your students. It will help: Present the Theory of Finite Element Analysis: The presentation of theoretical aspects of finite element analysis is carefully designed not to overwhelm students. Explain How to Use ANSYS Effectively: ANSYS is incorporated as an integral part of the content throughout the book. Explore How to Use FEA as a Design/Modeling Tool: Open-ended design problems help students apply concepts. 606 $aFinite element method$xData processing 615 0$aFinite element method$xData processing. 676 $a620.00151535 700 $aMoaveni$b Saeed$062818 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bUtOrBLW 906 $aBOOK 912 $a9910150205003321 996 $aFinite element analysis$9995947 997 $aUNINA LEADER 00709nam0-22002411i-450 001 990002593380403321 005 20230913100209.0 035 $a000259338 035 $aFED01000259338 035 $a(Aleph)000259338FED01 100 $a20000920d1986----km-y0itay50------ba 101 0 $aeng 102 $aGB 200 1 $aFinancial reporting 1986-1987$ea survey of UK published accounts$fdi SKERRAT 210 $aLondon$cThe Institute of Chartered Acco untants$d1986 700 1$aSkerrat,$bL.C.l.$0368697 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990002593380403321 952 $a15-5-31-RA$b679 DEA$fECA 959 $aECA 996 $aFinancial reporting 1986-1987$9435415 997 $aUNINA LEADER 01456nam 2200313 i 4500 001 991004402927907536 005 20251022111406.0 008 251016s2020 -uka e b 001 0 eng d 020 $a9781108486828$qhardcopy 024 7 $a10.1017/9781108571401$2doi 040 $aBibl. Dip.le Aggr. Matematica e Fisica - Sez. Matematica$beng 082 04$a518.1 084 $aAMS 68Q-xx 084 $aLC QA402 100 1 $aLattimore, Tor$01854713 245 10$aBandit algorithms /$cTor Lattimore, Csaba Szepesvári 260 $aCambridge ;$aNew York, NY :$bCambridge University Press,$c2020 300 $axviii, 518 p. :$bill. ;$c26 cm 504 $aIncludes bibliographical references (p. [484]-511) and index 520 $aDecision-making in the face of uncertainty is a challenge in machine learning, and the multi-armed bandit model is a common framework to address it. This comprehensive introduction is an excellent reference for established researchers and a resource for graduate students interested in exploring stochastic, adversarial and Bayesian frameworks 650 24$aResource allocation$xMathematical models 650 24$aDecision making$xMathematical models 650 14$aAlgorithms 650 14$aProbabilities 650 14$aMathematical optimization 700 1 $aSzepesvári, Csaba$eauthor$4http://id.loc.gov/vocabulary/relators/aut$01854714 912 $a991004402927907536 996 $aBandit algorithms$94452332 997 $aUNISALENTO