LEADER 00940nam0-2200361---450- 001 990008542430403321 005 20071116094150.0 010 $a97-80-8176-4537-3 035 $a000854243 035 $aFED01000854243 035 $a(Aleph)000854243FED01 035 $a000854243 100 $a20070725d2007----km-y0itay50------ba 101 0 $aeng 102 $aUS 105 $aa---a---001yy 200 1 $aPolynomial convexity$fEdgar lee Stout 210 $aBoston$cBirkhauser$dc2007 215 $aX, 439 p.$d24 cm 225 1 $aProgress in mathematics$v261 610 0 $aPolinomi 610 0 $aFunzioni di una variabile complessa 700 1$aStout,$bEdgar Lee$066476 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990008542430403321 952 $aC-3-(261$b22098$fMA1 959 $aMA1 962 $a32A40 962 $a32D20 962 $a32E10 996 $aPolynomial convexity$9709948 997 $aUNINA LEADER 00838nam0-22002891i-450- 001 990002571670403321 035 $a000257167 035 $aFED01000257167 035 $a(Aleph)000257167FED01 035 $a000257167 100 $a20000920d1964----km-y0itay50------ba 101 0 $aENG 200 1 $a<>principles and applications of variational methods$fMartin Becker. 210 $aCambridge$cM.I.T. Press$d1964. 215 $aviii, 120 p.$d25 cm 225 1 $aResearch monograph$v27 610 0 $aCalcolo delle variazioni 676 $a516 700 1$aBecker,$bMartin$0104503 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990002571670403321 952 $aMXVI-A-21$b037044$fMAS 959 $aMAS 996 $aPrinciples and applications of variational methods$9436415 997 $aUNINA DB $aING01