LEADER 00860nam0-22002891i-450- 001 990002566570403321 035 $a000256657 035 $aFED01000256657 035 $a(Aleph)000256657FED01 035 $a000256657 100 $a20000920d1968----km-y0itay50------ba 101 0 $aENG 200 1 $aIntroduction to Statistical Procedures$eWith Computer Exercise$fPaul R. Lohnes , William W. Cooley. 210 $aNew York$cJohn Wiley$d1968. 215 $axv, 280 p.$d23 cm 610 0 $aStatistica, Statistica$ateoria generale 676 $a519 700 1$aLohnes,$bR. Paul$0368262 702 1$aCooley,$bWilliam W. 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990002566570403321 952 $aMXXIII-A-137$b1955$fMAS 959 $aMAS 996 $aIntroduction to Statistical Procedures$9436687 997 $aUNINA DB $aING01 LEADER 00945nam0-22003251i-450- 001 990000095950403321 005 20080110140552.0 035 $a000009595 035 $aFED01000009595 035 $a(Aleph)000009595FED01 035 $a000009595 100 $a20020821d1891----km-y0itay50------ba 101 0 $aita 102 $aIT 105 $ay-------001yy 200 1 $aColtivazione degli ortaggi$fG. e M. Roda 210 $aMilano$cItalia agricola$d1891 215 $a28 p.$d21 cm 225 1 $aBiblioteca popolare illustrata dell'Italia agricola, giornale di agricoltura$v1 610 0 $aOrticoltura 676 $a635 700 1$aRoda,$bGiuseppe$f<1821-1895>$0305695 701 1$aRoda,$bMarcellino$f<1814-1892>$073485 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990000095950403321 952 $a13 AR 28 B 03$b5443$fFINBC 959 $aFINBC 996 $aColtivazione degli ortaggi$9109145 997 $aUNINA LEADER 03185nam 22004215 450 001 9910349321603321 005 20200703124759.0 010 $a3-030-23865-2 024 7 $a10.1007/978-3-030-23865-0 035 $a(CKB)4100000009184538 035 $a(DE-He213)978-3-030-23865-0 035 $a(MiAaPQ)EBC5891147 035 $a(PPN)258064625 035 $a(EXLCZ)994100000009184538 100 $a20190903d2019 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aDiophantine Equations and Power Integral Bases $eTheory and Algorithms /$fby István Gaál 205 $a2nd ed. 2019. 210 1$aCham :$cSpringer International Publishing :$cImprint: Birkhäuser,$d2019. 215 $a1 online resource (XXII, 326 p. 2 illus. in color.) 311 $a3-030-23864-4 327 $aIntroduction -- Auxiliary results, tools -- Thue equations -- Inhomogeneous Thue equations -- Relative Thue equations -- The resolution of norm form equations -- Index form equations in general -- Cubic fields -- Quartic fields -- Quintic fields -- Sextic fields -- Pure fields -- Cubic relative extensions -- Quartic relative extensions -- Some higher degree fields -- Tables. 330 $aThis monograph outlines the structure of index form equations, and makes clear their relationship to other classical types of Diophantine equations. In order to more efficiently determine generators of power integral bases, several algorithms and methods are presented to readers, many of which are new developments in the field. Additionally, readers are presented with various types of number fields to better facilitate their understanding of how index form equations can be solved. By introducing methods like Baker-type estimates, reduction methods, and enumeration algorithms, the material can be applied to a wide variety of Diophantine equations. This new edition provides new results, more topics, and an expanded perspective on algebraic number theory and Diophantine Analysis. Notations, definitions, and tools are presented before moving on to applications to Thue equations and norm form equations. The structure of index forms is explained, which allows readers to approach several types of number fields with ease. Detailed numerical examples, particularly the tables of data calculated by the presented methods at the end of the book, will help readers see how the material can be applied. Diophantine Equations and Power Integral Bases will be ideal for graduate students and researchers interested in the area. A basic understanding of number fields and algebraic methods to solve Diophantine equations is required. 606 $aNumber theory 606 $aNumber Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M25001 615 0$aNumber theory. 615 14$aNumber Theory. 676 $a512.7 676 $a512.72 700 $aGaál$b István$4aut$4http://id.loc.gov/vocabulary/relators/aut$0781318 906 $aBOOK 912 $a9910349321603321 996 $aDiophantine Equations and Power Integral Bases$91732444 997 $aUNINA