LEADER 00824nam0-22002771i-450- 001 990004503260403321 005 19990530 035 $a000450326 035 $aFED01000450326 035 $a(Aleph)000450326FED01 035 $a000450326 100 $a19990530d1979----km-y0itay50------ba 101 0 $aita 105 $ay-------001yy 200 1 $aMechanism of language change in Latin$fTore Janson 210 $aStockholm$cAlmqust e Wiksell$d1979 215 $a134 p.$d23 cm 225 1 $aActa Universitatis Stockholmiensis. Studia Latina Stockholmiensia$v23 700 1$aJanson,$bTore$0180047 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990004503260403321 952 $a7/VIIIF2((23)$bbibl.51928$fFLFBC 959 $aFLFBC 996 $aMechanism of language change in Latin$9547656 997 $aUNINA LEADER 01006nam0-22002651i-450- 001 990002116840403321 005 20121116124131.0 035 $a000211684 035 $aFED01000211684 035 $a(Aleph)000211684FED01 035 $a000211684 100 $a20030910d2002----km-y0itay50------ba 101 0 $aita 102 $aIT 200 1 $a<>economia italiana nel 2002 Relazione previsionale e programatica per il 2002$erelazione previsionale e programatica per il 2002$fpresentato dal ministro dell'Economia e delle finanze Giulio Tremonti il 27 settembre 2001 210 $aRoma$cIstituto Poligrafico e Zecca dello Stato$d2002 215 $ax, 62 p.$d30 cm 710 02$aItalia.$bMinistero dell'economia e delle finanze$068664 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990002116840403321 952 $a62 338(45)/26 ITA$bDEPA/dono$fDAGEA 959 $aDAGEA 996 $aEconomia italiana nel 2002 Relazione previsionale e programatica per il 2002$9395481 997 $aUNINA LEADER 04560oam 2200517 450 001 9910779883503321 005 20190911112729.0 010 $a981-4460-15-X 035 $a(OCoLC)853679950 035 $a(MiFhGG)GVRL8RJH 035 $a(EXLCZ)992550000001096036 100 $a20141110h20132013 uy 0 101 0 $aeng 135 $aurun|---uuuua 181 $ctxt 182 $cc 183 $acr 200 00$aComplex quantum systems $eanalysis of large coulomb systems /$feditor, Heinz Siedentop, Ludwig-Maximilians-Universitat, Munchen, Germany 210 $a[Hackensack], NJ $cWorld Scientific$dc2013 210 1$aNew Jersey :$cWorld Scientific,$d[2013] 210 4$d?2013 215 $a1 online resource (xi, 290 pages) $cillustrations 225 1 $aLecture notes series,$x1793-0758 ;$vv. 24 300 $aDescription based upon print version of record. 311 $a981-4460-14-1 311 $a1-299-71360-2 320 $aIncludes bibliographical references. 327 $aCONTENTS; Foreword; Preface; Stability of Matter Rafael D. Benguria and Benjam?n A. Loewe; 1. Introduction: The stability of quantum systems: A historical overview; 2. Stability of Matter: The classical proof of Lieb and Thirring; 2.1. Stability of the hydrogen atom in non-relativistic quantum mechanics; 2.2. Stability of a system of N electrons in non-relativistic quantum mechanics; 2.3. Stability of a many particle system via Thomas-Fermi theory; 2.4. Bibliographical remarks; 3. Lieb-Thirring Inequalities 327 $a3.1. Use of commutation methods to prove the Lieb-Thirring inequality for = 3/2 in dimension 13.2. The Eden-Foias bound ([46]); 3.3. Bibliographical remarks; 4. Electrostatic Inequalities; 5. The Maximum Number of Electrons an Atom Can Bind; 5.1. The maximum number of electrons for a one center case in the Thomas-Fermi model; 5.2. Bound on Nc(Z) for the TFW model in the atomic case; 6. The Stability of Matter for a Relativistic Toy Model; 6.1. Bibliographical remarks; 7. A New Lieb-Oxford Bound with Gradient Corrections; Acknowledgments; Appendix: A Short History of the Atom; References 327 $aMathematical Density and Density Matrix Functional Theory (DFT and DMFT) Volker Bach1. Introduction; 2. Exchange Correlation and LDA; 3. Kinetic Energy and Lieb-Thirring Inequality; 4. Thomas-Fermi Theory and Stability of Matter; 5. Hartree-Fock Theory; 6. Correlation Estimate Improving the Lieb-Oxford Inequality; 7. Accuracy of the Hartree-Fock Approximation for Large Neutral Atoms; 8. N-Representability; Acknowledgments; References; On the Dynamics of a Fermi Gas in a Random Medium with Dynamical Hartree-Fock Interactions Thomas Chen; 1. Introduction; Acknowledgment 327 $aReferencesOn the Minimization of Hamiltonians over Pure Gaussian States Jan Derezinski, Marcin Napiorkowski, and Jan Philip Solovej; 1. Introduction; Acknowledgments; 2. Preliminaries; 2.1. 2nd quantization; 2.2. Wick quantization; 2.3. Bogoliubov transformations; 2.4. Pure Gaussian states; 3. Main Result; References; Variational Approach to Electronic Structure Calculations on Second-Order Reduced Density Matrices and the N-Representability Problem Maho Nakata, Mituhiro Fukuda, and Katsuki Fujisawa; 1. Introduction; 2. The Reduced-Density-Matrix Method; 2.1. Pure states and ensemble states 327 $a2.2. The first-order and second-order reduced density matrices 330 $aThis volume is based on lectures given during the program Complex Quantum Systems held at the National University of Singapore's Institute for Mathematical Sciences from 17 February to 27 March 2010. It guides the reader through two introductory expositions on large Coulomb systems to five of the most important developments in the field: derivation of mean field equations, derivation of effective Hamiltonians, alternative high precision methods in quantum chemistry, modern many body methods originating from quantum information, and - the most complex - semirelativistic quantum electrodynamics. 410 0$aLecture notes series (National University of Singapore. Institute for Mathematical Sciences) ;$vv. 24. 606 $aQuantum electrodynamics$xMathematics 606 $aQuantum theory$vCongresses 615 0$aQuantum electrodynamics$xMathematics. 615 0$aQuantum theory 676 $a530.12 702 $aSiedentop$b Heinz Karl Heinrich 801 0$bMiFhGG 801 1$bMiFhGG 906 $aBOOK 912 $a9910779883503321 996 $aComplex quantum systems$93729550 997 $aUNINA