LEADER 00847nam0-22002891i-450- 001 990001875700403321 005 20021010 035 $a000187570 035 $aFED01000187570 035 $a(Aleph)000187570FED01 035 $a000187570 100 $a20021010d--------km-y0itay50------ba 101 0 $aita 200 1 $aAttraverso l' Africa orientale italiana in un anno di studio$fAlfonso Chiaromonte. 210 $aFirenze$cStab. Fiorentino d' Arte Grafica$d1928. 215 $a18 p.$d23 cm 610 0 $aAgricoltura 676 $a630 700 1$aChiaromonte,$bAlfonso$080848 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990001875700403321 952 $a60 MISC. B 164/19$b$fFAGBC 959 $aFAGBC 996 $aAttraverso l' Africa orientale italiana in un anno di studio$9400659 997 $aUNINA DB $aING01 LEADER 03651nam 2200673Ia 450 001 9910964232103321 005 20240417032333.0 010 $a9781438439181 010 $a1438439180 024 7 $a10.1515/9781438439181 035 $a(CKB)2670000000150022 035 $a(OCoLC)775361482 035 $a(CaPaEBR)ebrary10573978 035 $a(SSID)ssj0000606728 035 $a(PQKBManifestationID)11357278 035 $a(PQKBTitleCode)TC0000606728 035 $a(PQKBWorkID)10583008 035 $a(PQKB)11713060 035 $a(MdBmJHUP)muse14204 035 $a(Au-PeEL)EBL3407117 035 $a(CaPaEBR)ebr10573978 035 $a(OCoLC)923402723 035 $a(DE-B1597)682493 035 $a(DE-B1597)9781438439181 035 $a(MiAaPQ)EBC3407117 035 $a(Perlego)2672458 035 $a(EXLCZ)992670000000150022 100 $a20110131d2011 ub 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 00$aThinking with Irigaray /$fedited by Mary C. Rawlinson, Sabrina L. Hom, Serene J. Khader 210 $aAlbany $cState University of New York Press$dc2011 215 $a1 online resource (313 p.) 225 1 $aSUNY series in gender theory 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a9781438439167 311 08$a1438439164 311 08$a9781438439174 311 08$a1438439172 320 $aIncludes bibliographical references and index. 327 $tFront Matter -- $tContents -- $tThe Work of Sexual Difference -- $tAlternatives to Masculine Genealogies -- $tOrestes with Oedipus -- $tBeyond the Madonna -- $tAnimality and Descent -- $tOvercoming Binary Oppositions -- $tBeyond the Vertical and the Horizontal -- $tSpace and Irigaray?s Theory of Sexual Difference -- $tCan Luce Irigaray?s Notion of Sexual Difference Be Applied to Transsexual and Transgender Narratives? -- $tThe Ethical Irigaray -- $tThe Incomplete Masculine -- $tA Bridge Between Three Forever Irreducible to Each Other(s) -- $tWomen and Interiority -- $tSexuality on the Market -- $tFishing and Thinking, or An Interiority of My Own -- $tAutonomy and Divinity -- $tWomen as Political Agents -- $tAntigone Falters -- $tAntigone?s Exemplarity -- $tContributors -- $tIndex 330 $aThinking with Irigaray takes up Irigaray's challenge to think beyond the androcentric, one-subject culture, identifying much that is useful and illuminative in Irigaray's work while also questioning some of her assumptions and claims. Some contributors reject outright her prescriptions for changing our culture, others suggest that her prescriptions are inconsistent with the basic ethical concerns of her project, and still others attempt to identify blind spots in her work. By confronting and challenging the mechanisms of masculine domination Irigaray has identified and applying these insights to a wide range of practical and contemporary concerns, including popular media representations of women's sexuality, feminist practice in the arts, political resistance, and yoga, the contributors demonstrate the unique potential of Irigaray's thought within feminist philosophy and gender studies. 410 0$aSUNY series in gender theory. 606 $aPhilosophers$zFrance 615 0$aPhilosophers 676 $a194 701 $aHom$b Sabrina L$01808487 701 $aKhader$b Serene J$01808488 701 $aRawlinson$b Mary C$01808489 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910964232103321 996 $aThinking with Irigaray$94358745 997 $aUNINA LEADER 11825nam 22005893 450 001 9911020041803321 005 20240521082204.0 010 $a9781394167876 010 $a1394167873 010 $a9781394167883 010 $a1394167881 035 $a(MiAaPQ)EBC31246939 035 $a(Au-PeEL)EBL31246939 035 $a(CKB)31320189200041 035 $a(Exl-AI)31246939 035 $a(OCoLC)1428902249 035 $a(EXLCZ)9931320189200041 100 $a20240405d2024 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$a2D Nanomaterials $eSynthesis, Properties, and Applications 205 $a1st ed. 210 $cJohn Wiley & Sons, Inc$d2024 210 1$aNewark :$cJohn Wiley & Sons, Incorporated,$d2024. 210 4$dİ2024. 215 $a1 online resource (514 pages) 311 08$a9781394166497 311 08$a1394166494 327 $aCover -- Title Page -- Copyright Page -- Contents -- Preface -- Part I: Synthesis of 2D Nanomaterials -- Chapter 1 Top-Down Strategies Synthesis of 2D Nanomaterial -- 1.1 Introduction -- 1.2 Top-Down Strategy Synthesis Method -- 1.2.1 Etching -- 1.2.2 Mechanical Milling -- 1.2.3 Sputtering -- 1.3 Laser Ablation -- 1.4 Characterizations and Toxicity of 2D Nanomaterials -- 1.5 Conclusions -- References -- Chapter 2 Bottom-Up Strategies for Synthesis of 2D Nanomaterial -- 2.1 Introduction -- 2.2 Types of 2D Nanomaterial -- 2.2.1 Graphene -- 2.2.2 MXenes -- 2.2.3 Black Phosphorus -- 2.2.4 Hexagonal Boron Nitride -- 2.2.5 Transition Metal Dichalcogenides -- 2.2.6 Graphitic Carbon Nitride -- 2.2.7 MOF and COF -- 2.3 Synthesis Strategies -- 2.3.1 Top-Down -- 2.3.1.1 Mechanical Milling -- 2.3.1.2 Electrospinning -- 2.3.1.3 Lithography -- 2.3.1.4 Sputtering -- 2.3.1.5 The Arc Discharge Method -- 2.3.1.6 Laser Ablation -- 2.3.2 Bottom-Up Method -- 2.3.2.1 Chemical Vapor Deposition -- 2.3.2.2 Sol-Gel Method -- 2.3.2.3 Solvothermal and Hydrothermal Methods -- 2.3.2.4 Soft and Hard Template and Reverse Micelle Methods -- 2.4 Bottom-Up Strategies for Synthesis of 2D Nanomaterial -- 2.5 Conclusion and Outlook -- References -- Chapter 3 Unveiling the Intricacies: Characterization Techniques for 2D Nanomaterials -- 3.1 Introduction -- 3.2 Characterization Techniques -- 3.2.1 XRD -- 3.2.2 SEM and TEM -- 3.2.3 Optical Microscope -- 3.2.4 AFM -- 3.2.5 XPS -- 3.2.6 RAMAN -- 3.3 Conclusion -- References -- Part II: Properties of 2D Nanomaterials -- Chapter 4 Crystal Structure, Magnetic and Mechanical Properties of 2D Nanomaterials -- 4.1 Introduction -- 4.2 Structure of 2D Materials -- 4.2.1 Graphene -- 4.2.2 Black Phosphorous -- 4.2.3 Transition Metal Dichalcogenide (TMDC) -- 4.3 Magnetic 2D Materials -- 4.4 Origin of Magnetization in 2D Materials. 327 $a4.5 Mechanical Properties of 2D Nanomaterials -- 4.6 Conclusion -- References -- Chapter 5 Electrical, Plasmonic, and Optical Properties of 2D Nanomaterials -- 5.1 Introduction -- 5.2 Overview of Two-Dimensional Nanomaterials (2D NMs) -- 5.3 Electrical Properties of 2D NMs -- 5.4 Optical Properties of 2D NMs -- 5.5 Plasmonic Properties of 2D NMs -- 5.6 Recent Applications of 2D NMs -- 5.6.1 2D NMs for BioMedical Application -- 5.6.2 2D NMs in the Field of Energy -- 5.6.3 2D NMs as Lubricant Additive -- 5.7 Challenges and Prospective -- 5.8 Conclusion -- Acknowledgments -- References -- Part III: Application of 2D Nanomaterials -- Chapter 6 Challenges Surrounding 2D Nanomaterials and Their Application to Photocatalytic Industrial Wastewater Treatment -- 6.1 Introduction -- 6.2 Photocatalysis for Industrial Wastewater Treatment -- 6.2.1 Principles of Photocatalysis -- 6.2.2 Photocatalytic Processes for Industrial Wastewater Treatment -- 6.2.3 Advantages and Limitations of Photocatalysis -- 6.3 2D Nanomaterials in Photocatalysis -- 6.3.1 Introduction to 2D Nanomaterials and Types Used in Photocatalysis -- 6.3.2 Key Properties and Characteristics of 2D Nanomaterials -- 6.3.3 Role of 2D Nanomaterials in Enhancing Photocatalytic Performance -- 6.4 Challenges in Utilizing 2D Nanomaterials for Photocatalytic Wastewater Treatment -- 6.4.1 Synthesis and Fabrication Challenges -- 6.4.2 Stability and Degradation Issues -- 6.4.3 Efficiency and Selectivity Considerations -- 6.4.4 Scalability and Cost-Effectiveness Challenges -- 6.5 Strategies to Overcome Challenges -- 6.5.1 Improvement of Synthesis and Fabrication Techniques -- 6.5.2 Enhancement of Stability and Durability -- 6.5.3 Optimization of Photocatalytic Performance -- 6.5.4 Economical and Scalable Production Methods -- 6.6 Case Studies and Applications. 327 $a6.6.1 Examples of Successful Applications of 2D Nanomaterials -- 6.6.2 Case Studies in Photocatalytic Industrial Wastewater Treatment -- 6.6.3 Lessons Learned and Future Prospects -- 6.7 Conclusion -- References -- Chapter 7 Application of 2D Nanomaterials for Energy Storage -- 7.1 Introduction -- 7.2 2D Nanomaterials for Application of Lithium Ion Batteries -- 7.3 Application of 2D Nanomaterials in Sodium Ion Batteries -- 7.4 Application of 2D Nanomaterials in Potassium Ion Batteries -- 7.5 Applications of 2D Nanomaterials in Supercapacitors -- Conclusions -- References -- Chapter 8 Innovation in Photoinduced Antibacterial 2D Nanomaterials -- 8.1 Introduction -- 8.2 Antibacterial Applications Based on Graphene-Induced Photostimulation -- 8.2.1 Nanomaterials for Antibacterial Transition-Metal Dichalcogenides/Oxides -- 8.2.2 Antibacterial Nanomaterials Based on Carbon Nitride -- 8.2.3 Antibacterial Nanomaterials Based on Black Phosphorus -- 8.2.4 Other 2D Antibacterial Nanomaterials -- 8.3 Antibacterial Mechanisms of Graphene-Based Family -- 8.3.1 Physical Contact Destruction -- 8.3.2 Oxidative Stress -- 8.3.3 Disruption of Bacterial Protein Interactions -- 8.3.4 Photo-Induced Mechanisms -- 8.4 Conclusion -- References -- Chapter 9 2D Nanomaterials for Drug Delivery System -- 9.1 Introduction -- 9.2 2D Material Biosynthesis -- 9.3 Encapsulation of 2D Materials -- 9.4 Hydrogel Encapsulation-2D Materials -- 9.5 2D Material Encapsulation-Liposomes -- 9.6 2D Supply Encapsulation-Micelle -- 9.7 Stimuli Responsive 2D Material SDDSs-Classification -- 9.8 Light-Sensitive SDDSs -- 9.9 Magnetic Field-Responsive SDDSs -- 9.10 Various Response Exhibits Diverse-Advantages/Disadvantages -- 9.11 2D Material SDDS Therapy-Cancer -- 9.12 Antibacterial -- 9.12.1 Central Nervous System -- 9.13 Orthopedic -- 9.14 Diabetes Mellitus. 327 $a9.15 2D Materials in Intelligent Drug Delivery System-Advantages -- 9.16 Disadvantages -- 9.17 Conclusion and Future Perspective -- Acknowledgements -- References -- Chapter 10 New Technology 2D Nanomaterials for Neural Tissue Engineering -- 10.1 Introduction -- 10.2 Regeneration of Tissue and Organ Repair in Nature -- 10.2.1 The 'Curious Case' of Lizard: A Nature's Classic -- 10.2.2 Regenerative Capabilities of Amphibians -- 10.2.3 Regeneration in Humans -- 10.3 Nanotechnology and Neural Tissue Engineering -- 10.3.1 Definition of Nanotechnology -- 10.3.2 Synthesis of Nanomaterials or Nanoparticles -- 10.4 2D Nanomaterials for Tissue Engineering Application -- 10.4.1 Graphene-Based Nanomaterials in Tissue Engineering -- 10.4.2 Black-Phosphorus (BP)-Based Nanosheets in Tissue Engineering -- 10.4.3 Application of 2D Nanoclay in Tissue Engineering -- 10.5 2D Nanomaterials and Peripheral Nerve Engineering -- 10.5.1 Peripheral Nerve -- 10.5.2 Damage and Regeneration in Peripheral Nerve -- 10.5.3 Key Features of Nanomaterials in Neural Tissue Engineering -- 10.5.4 Mechanism of 2D Nanomaterial-Based Neural Regeneration -- 10.5.4.1 Graphene -- 10.5.4.2 Graphene Oxide -- 10.5.4.3 Black Phosphorus (BP) -- 10.6 Application of 2D Nanomaterials in Spinal Cord Repair -- 10.7 2D Nanomaterials for Drug/Gene Delivery -- 10.8 Challenges and Prospects -- References -- Chapter 11 Theranostic Approach of 2D Nanomaterials in Breast Cancer -- 11.1 Introduction -- 11.2 Applications -- Conclusion -- Acknowledgments -- References -- Chapter 12 2D Nanomaterials for Photocatalytic Hydrogen Production -- 12.1 Introduction -- 12.2 Basics of Photocatalytic Hydrogen Production -- 12.3 2D Nanomaterials for Photocatalytic Hydrogen Production -- 12.3.1 Graphene-Based -- 12.3.2 Carbon Nitrides -- 12.3.3 Transition Metal Dichalcogenides -- 12.3.4 MXene. 327 $a12.4 Enhancing the Photocatalytic Performance -- 12.5 Conclusion and Outlook -- Acknowledgments -- References -- Chapter 13 Supercapacitor Based on 2D Nanomaterials and Their Hybrid -- 13.1 Introduction -- 13.2 Structure Design of 2D Nanomaterial-Based Supercapacitors -- 13.3 2D Nanomaterials for Supercapacitor Technology -- 13.3.a Transition Metal Oxides (TMOs) and Transition Metal Hydroxides (TMHs)-Based Supercapacitor -- 13.3.a.1 Transition Metal Oxides -- 13.3.a.2 Transition Metal Hydroxides -- 13.3.b Transition Metal Carbide/Carbonitride (MXene)-Based Supercapacitor -- 13.3.c Transition Metal Dichalcogenide (TMD)-Based Supercapacitor -- 13.3.d Black Phosphorous-Based Supercapacitor -- 13.4 Conclusions -- References -- Chapter 14 2D Nanomaterials Based for Electrocatalytic Application -- 14.1 Introduction -- 14.1.1 Introduction to 2D Nanomaterials and Their Unique Properties -- 14.1.2 Motivation for Utilizing 2D Nanomaterials in Electrocatalytic Applications -- 14.2 Types of 2D Nanomaterials -- 14.2.1 Graphene -- 14.2.2 Dichalcogenides (TMDs) -- 14.2.3 Brief Overview of Their Structures and Properties -- 14.3 Electrocatalytic Reactions Enabled by 2D Nanomaterials -- 14.3.1 Oxygen Reduction Reaction (ORR) -- 14.3.2 Hydrogen Evolution Reaction (HER) -- 14.3.3 Carbon Dioxide Reduction Reaction (CO2RR) -- 14.3.4 Synthesis and Characterization Techniques -- 14.3.4.1 Synthesis Methods for 2D Nanomaterials -- 14.3.4.2 Characterization Techniques for 2D Nanomaterials -- 14.3.4.3 Relationship Between Synthesis, Structure, and Electrocatalytic Performance -- 14.4 Challenges and Future Perspectives -- 14.4.1 Current Challenges in Utilizing 2D Nanomaterials for Electrocatalytic Applications -- 14.4.2 Potential Strategies to Overcome These Challenges -- 14.4.3 Future Directions and Emerging Trends in the Field -- 14.5 Conclusion -- References. 327 $aChapter 15 Engineering 2D Nanomaterials for Biomedical Applications. 330 $aThis book provides a comprehensive exploration of two-dimensional (2D) nanomaterials, focusing on their synthesis, properties, and wide range of applications. It covers both top-down and bottom-up strategies for synthesizing 2D nanomaterials, including methods such as etching, mechanical milling, and chemical vapor deposition. The text delves into the intrinsic properties of 2D materials, such as their crystal structure, magnetic, mechanical, electrical, and optical characteristics, as well as their plasmonic properties. The book also discusses the application of 2D nanomaterials in various fields, including energy storage, wastewater treatment, antibacterial technologies, drug delivery systems, and neural tissue engineering. Authored by experts in the field, it is intended for researchers, scholars, and professionals in materials science and nanotechnology, aiming to provide insights into the challenges and future prospects of 2D nanomaterials.$7Generated by AI. 606 $aNanostructured materials$7Generated by AI 606 $aNanotechnology$7Generated by AI 615 0$aNanostructured materials 615 0$aNanotechnology 676 $a620.112 700 $aChakroborty$b Subhendu$01840612 701 $aPal$b Kaushik$01424400 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911020041803321 996 $a2D Nanomaterials$94420200 997 $aUNINA