LEADER 00820nam0-22003011i-450- 001 990001846050403321 005 20021010 035 $a000184605 035 $aFED01000184605 035 $a(Aleph)000184605FED01 035 $a000184605 100 $a20021010d--------km-y0itay50------ba 101 0 $aita 200 1 $aHerbarium organization$fCharles F. Millspaugh. 210 $aChicago$cB. E. Dahlgren$d1925. 215 $a18 p.$d26 cm 225 1 $aField Museum of Natural History. Publication$v229 610 0 $aErbari 676 $a580.742 700 1$aMillspaugh,$bCharles F.$081133 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990001846050403321 952 $a60 MISC. B 55/3$b$fFAGBC 959 $aFAGBC 996 $aHerbarium organization$9415200 997 $aUNINA DB $aING01 LEADER 01190nam a2200325Li 4500 001 991001396429707536 008 110922s2011 njua b 001 0 eng d 020 $a9780691151298 020 $a9780691151304 035 $ab14007964-39ule_inst 040 $aDip.to Matematica$beng 084 $aAMS 58J05 084 $aAMS 58J35 084 $aLC QA377.B575 100 1 $aBismut, Jean-Michel$044924 245 10$aHypoelliptic Laplacian and orbital integrals /$cJean-Michel Bismut 260 $aPrinceton :$bPrinceton University Press,$cc2011 300 $ax, 330 p. :$bill. ;$c25 cm 440 0$aAnnals of mathematics studies ;$v177 504 $aIncludes bibliographical references and indexes 650 0$aDifferential equations, Hypoelliptic 650 0$aLaplacian operator 650 0$aDefinite integrals 650 0$aOrbit method 907 $a.b14007964$b28-01-14$c22-09-11 912 $a991001396429707536 945 $aLE013 58J BIS11 (2011)$g1$i2013000214573$lle013$op$pE86.90$q-$rl$s- $t0$u1$v0$w1$x0$y.i15347023$z16-11-11 996 $aHypoelliptic Laplacian and orbital integrals$9241722 997 $aUNISALENTO 998 $ale013$b22-09-11$cm$da $e-$feng$gnju$h0$i0