LEADER 00920nam0-22002891i-450- 001 990001844570403321 005 20021010 035 $a000184457 035 $aFED01000184457 035 $a(Aleph)000184457FED01 035 $a000184457 100 $a20021010d--------km-y0itay50------ba 101 0 $aita 200 1 $a<>defectos y accidentes mas comune en la elaboracion de quesos$ereconocimientos, causas y manera de evitarlos$fJose G.Rivas. 210 $aBuenos Aires$cMinisterio de Agricultura. Seccion Propaganda e Informes$d1926. 215 $a31 p.$d27 cm 610 0 $aFormaggio 676 $a641.373 700 1$aRivas,$bJose G.$0358036 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990001844570403321 952 $a60 MISC. B 49/10$b$fFAGBC 959 $aFAGBC 996 $aDefectos y accidentes mas comune en la elaboracion de quesos$9414871 997 $aUNINA DB $aING01 LEADER 05223nam 22007334a 450 001 9911006687803321 005 20200520144314.0 010 $a1-5231-2123-8 010 $a9786612349157 010 $a1-282-34915-5 010 $a0-19-157421-X 035 $a(CKB)2560000000296379 035 $a(EBL)3053556 035 $a(OCoLC)922969630 035 $a(SSID)ssj0000289002 035 $a(PQKBManifestationID)11221424 035 $a(PQKBTitleCode)TC0000289002 035 $a(PQKBWorkID)10383679 035 $a(PQKB)11632235 035 $a(StDuBDS)EDZ0000075792 035 $a(MiAaPQ)EBC3053556 035 $a(MiAaPQ)EBC7038165 035 $a(Au-PeEL)EBL7038165 035 $a(OCoLC)1336403071 035 $a(EXLCZ)992560000000296379 100 $a20091114d2010 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aApplied shape optimization for fluids /$fBijan Mohammadi, Olivier Pironneau 205 $a2nd ed. 210 $aOxford ;$aNew York $cOxford University Press$dc2010 215 $a1 online resource (292 p.) 225 1 $aNumerical mathematics and scientific computation 300 $aDescription based upon print version of record. 311 08$a0-19-954690-8 311 08$a0-19-172048-8 320 $aIncludes bibliographical references and index. 327 $aContents; 1 Introduction; 2 Optimal shape design; 2.1 Introduction; 2.2 Examples; 2.2.1 Minimum weight of structures; 2.2.2 Wing drag optimization; 2.2.3 Synthetic jets and riblets; 2.2.4 Stealth wings; 2.2.5 Optimal breakwater; 2.2.6 Two academic test cases: nozzle optimization; 2.3 Existence of solutions; 2.3.1 Topological optimization; 2.3.2 Suficient conditions for existence; 2.4 Solution by optimization methods; 2.4.1 Gradient methods; 2.4.2 Newton methods; 2.4.3 Constraints; 2.4.4 A constrained optimization algorithm; 2.5 Sensitivity analysis 327 $a2.5.1 Sensitivity analysis for the nozzle problem2.5.2 Numerical tests with freefem++; 2.6 Discretization with triangular elements; 2.6.1 Sensitivity of the discrete problem; 2.7 Implementation and numerical issues; 2.7.1 Independence from the cost function; 2.7.2 Addition of geometrical constraints; 2.7.3 Automatic differentiation; 2.8 Optimal design for Navier-Stokes flows; 2.8.1 Optimal shape design for Stokes flows; 2.8.2 Optimal shape design for Navier-Stokes flows; References; 3 Partial differential equations for fluids; 3.1 Introduction; 3.2 The Navier-Stokes equations 327 $a3.2.1 Conservation of mass3.2.2 Conservation of momentum; 3.2.3 Conservation of energy and and the law of state; 3.3 Inviscid flows; 3.4 Incompressible flows; 3.5 Potential flows; 3.6 Turbulence modeling; 3.6.1 The Reynolds number; 3.6.2 Reynolds equations; 3.6.3 The k - ? model; 3.7 Equations for compressible flows in conservation form; 3.7.1 Boundary and initial conditions; 3.8 Wall laws; 3.8.1 Generalized wall functions for u; 3.8.2 Wall function for the temperature; 3.8.3 k and ?; 3.9 Generalization of wall functions; 3.9.1 Pressure correction 327 $a3.9.2 Corrections on adiabatic walls for compressible flows3.9.3 Prescribing ?[sub(w)]; 3.9.4 Correction for the Reichardt law; 3.10 Wall functions for isothermal walls; References; 4 Some numerical methods for fluids; 4.1 Introduction; 4.2 Numerical methods for compressible flows; 4.2.1 Flux schemes and upwinded schemes; 4.2.2 A FEM-FVM discretization; 4.2.3 Approximation of the convection fluxes; 4.2.4 Accuracy improvement; 4.2.5 Positivity; 4.2.6 Time integration; 4.2.7 Local time stepping procedure; 4.2.8 Implementation of the boundary conditions 327 $a4.2.9 Solid walls: transpiration boundary condition4.2.10 Solid walls: implementation of wall laws; 4.3 Incompressible flows; 4.3.1 Solution by a projection scheme; 4.3.2 Spatial discretization; 4.3.3 Local time stepping; 4.3.4 Numerical approximations for the k - ? equations; 4.4 Mesh adaptation; 4.4.1 Delaunay mesh generator; 4.4.2 Metric definition; 4.4.3 Mesh adaptation for unsteady flows; 4.5 An example of adaptive unsteady flow calculation; References; 5 Sensitivity evaluation and automatic differentiation; 5.1 Introduction; 5.2 Computations of derivatives; 5.2.1 Finite differences 327 $a5.2.2 Complex variables method 330 8 $aExamining shape optimization problems for fluids, with the equations needed for their understanding and the simulation of these problems, this text introduces automatic differentiation approximate gradients, and automatic mesh refinement. 410 0$aNumerical mathematics and scientific computation. 606 $aFluid dynamics$xMathematics 606 $aMathematical optimization 606 $aShape theory (Topology) 615 0$aFluid dynamics$xMathematics. 615 0$aMathematical optimization. 615 0$aShape theory (Topology) 676 $a620.1/06/0151 700 $aMohammadi$b B$01822931 701 $aPironneau$b Olivier$0306 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911006687803321 996 $aApplied shape optimization for fluids$94389378 997 $aUNINA