LEADER 00934cam0-22003251i-450- 001 990004370510403321 005 20080718163649.0 010 $a0-521-55634-1 035 $a000437051 035 $aFED01000437051 035 $a(Aleph)000437051FED01 035 $a000437051 100 $a19990604d1993----km-y0itay50------ba 101 0 $aeng 102 $aGB 105 $ay-------001yy 200 1 $a<>history of the hebrew language$fAngel Sáenz-Badillos$gtranslated by John Elwolde 210 $aCambridge$cCambridge University Press$d1993 215 $aXII, 371 p.$d23 cm 610 0 $aLingua ebraica$aStoria 676 $a492.4$v21$zit 700 1$aSaenz-Badillos,$bAngel$0174968 702 1$aElwolde,$bJohn 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990004370510403321 952 $a492.4 SAE 1$fFLFBC 959 $aFLFBC 996 $aHistory of the hebrew language$9540507 997 $aUNINA LEADER 00890nam0-22003131i-450- 001 990001433020403321 010 $a3-7643-5805-X 035 $a000143302 035 $aFED01000143302 035 $a(Aleph)000143302FED01 035 $a000143302 100 $a20000920d1998----km-y0itay50------ba 101 0 $aeng 200 1 $aConvex integration theory$esolutions to the h-principle in geometry and topology$fDavid Spring 210 $aBoston [MA]$cBirkhauser$dc1998 215 $aviii, 212 p.$d25 cm 225 1 $aMonographs in mathematics$v92 610 0 $aTopologia differenziale 676 $a514.72 700 1$aSpring,$bDavid$061876 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990001433020403321 952 $aC-58-(92$b15814$fMA1 959 $aMA1 962 $a57R99 996 $aConvex integration theory$9374783 997 $aUNINA DB $aING01