LEADER 01050nam0-22003611i-450- 001 990000817310403321 005 20070427140025.0 035 $a000081731 035 $aFED01000081731 035 $a(Aleph)000081731FED01 035 $a000081731 100 $a20020821d1999----km-y0itay50------ba 101 0 $aita 105 $aa---a---001yy 200 1 $aAl Centro$eil Centro Direzionale di Napoli$f[testi: Antonella Sinopoli, Marco Suraci$gfoto ed elaborazioni digitali: Ciro Fusco] 210 $a[S. l.]$cEditoriale Vivere$d[1999] 215 $a103 p.$cill.$d33 cm 610 0 $aCentro Direzionale$aNapoli 610 0 $aNapoli$aCentro direzionale 610 0 $aNapoli 610 0 $aArchitettura 676 $a720.4573 702 1$aSinopoli,$bAntonella 702 1$aSuraci,$bMarco 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990000817310403321 952 $aSEZ.NA C 738$b11141$fFARBC 952 $a08 AA 678$b1040$fDINED 959 $aFARBC 959 $aDINED 996 $aAl Centro$9347635 997 $aUNINA LEADER 03141nam 2200661 450 001 9910788742403321 005 20180731045131.0 010 $a1-4704-0461-3 035 $a(CKB)3360000000465041 035 $a(EBL)3114232 035 $a(SSID)ssj0000889097 035 $a(PQKBManifestationID)11497169 035 $a(PQKBTitleCode)TC0000889097 035 $a(PQKBWorkID)10881941 035 $a(PQKB)11679267 035 $a(MiAaPQ)EBC3114232 035 $a(RPAM)14306727 035 $a(PPN)195417453 035 $a(EXLCZ)993360000000465041 100 $a20060320h20062006 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aNon-doubling Ahlfors measures, perimeter measures, and the characterization of the trace spaces of Sobolev functions in Carnot-Carathe?odory spaces /$fDonatella Danielli, Nicola Garofalo, Duy-Minh Nhieu 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[2006] 210 4$d©2006 215 $a1 online resource (138 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vnumber 857 300 $a"July 2006, volume 182, number 857 (first of 4 numbers)." 311 $a0-8218-3911-X 320 $aIncludes bibliographical references (pages 111-119). 327 $a""Chapter 4. X-variation, X-perimeter and surface measure""""4.1. The structure of functions in BV[sub(X,loc)]""; ""4.2. X-Caccioppoli sets""; ""4.3. X-perimeter and the perimeter measure""; ""Chapter 5. Geometric estimates from above on CC balls for the perimeter measure""; ""5.1. A fundamental estimate""; ""5.2. The X-perimeter of a C[sup(1,1)] domain is an upper 1-Ahlfors measure""; ""Chapter 6. Geometric estimates from below on CC balls for the perimeter measure""; ""6.1. The relative isoperimetric inequality and Theorem 6.1""; ""6.2. A basic geometric lemma"" 327 $a""10.2. Characterization of the traces on the boundary""""Chapter 11. The embedding of B[sup(p)][sub(I?²)](I?©, dI??) into L[sup(q)](I?©, dI??)""; ""Chapter 12. Returning to Carnot groups""; ""Chapter 13. The Neumann problem""; ""Chapter 14. The case of Lipschitz vector fields""; ""Bibliography"" 410 0$aMemoirs of the American Mathematical Society ;$vno. 857. 606 $aHarmonic analysis 606 $aHomogeneous spaces 606 $aSobolev spaces 606 $aMeasure theory 606 $aDifferential equations, Partial 615 0$aHarmonic analysis. 615 0$aHomogeneous spaces. 615 0$aSobolev spaces. 615 0$aMeasure theory. 615 0$aDifferential equations, Partial. 676 $a510 s 676 $a515/.2433 700 $aDanielli$b Donatella$f1966-$0502357 702 $aGarofalo$b Nicola 702 $aNhieu$b Duy-Minh$f1966- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910788742403321 996 $aNon-doubling Ahlfors measures, perimeter measures, and the characterization of the trace spaces of Sobolev functions in Carnot-Carathe?odory spaces$93838125 997 $aUNINA