LEADER 01271nam0-22003491i-450- 001 990000809370403321 005 20160802093945.0 035 $a000080937 035 $aFED01000080937 035 $a(Aleph)000080937FED01 035 $a000080937 100 $a20020821d1993----km-y0itay50------ba 101 0 $aita 105 $ay-------001yy 200 1 $a<>opera di Camillo Camiliani$fMarina Scarlata 210 $aRoma$cIstituto Poligrafico e Zecca dello Stato$d1993 215 $aVIII, 685 p., [3] c. di tav. ripieg.$cin gran parte c. topogr. color.$d35 cm 300 $aNella pubblicazione è riprodotto a stampa il manoscritto: Descrittione delle Marine del Regno di Sicilia / di Camillo Camiliani, datato fine sec. XVI-inizio sec. XVII. - Bibliografia e fonti: p. 673-684 610 0 $aSICILIA $acoste$adescrizione 610 0 $aSICILIA$atorri costiere$asec. XVI 610 0 $aCAMILIANI 610 0 $aSICILIA$acartografia$asec. XVI 610 0 $aCamillo$aopere 700 1$aScarlata,$bMarina$039864 702 1$aCamiliani,$bCamillo 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990000809370403321 952 $aRARI C 250$b7562$fFARBC 959 $aFARBC 996 $aOpera di Camillo Camiliani$9352210 997 $aUNINA LEADER 01904oam 2200469Ia 450 001 9910699001603321 005 20100121125554.0 035 $a(CKB)5470000002399875 035 $a(OCoLC)436233334 035 $a(EXLCZ)995470000002399875 100 $a20090910d2009 ua 0 101 0 $aeng 135 $aurmn||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aWind for schools$b[electronic resource] $edeveloping education programs to train the next generation of the wind energy workforce : preprint /$fI. Baring-Gould ... [and others] 210 1$a[Golden, CO] :$cNational Renewable Energy Laboratory,$d[2009] 215 $a1 online resource (8 pages) $cillustrations 225 1 $aConference paper ;$vNREL/CP-500-45473 300 $aTtle from title screen (viewed September 10, 2009). 300 $a"Presented at WINDPOWER 2009 Conference and Exhibition, Chicago, Illinois, May 4-7, 2009." 300 $a"August 2009." 320 $aIncludes bibliographical references (page 8). 517 $aWind for schools 606 $aWind power$xStudy and teaching$zUnited States$vCongresses 606 $aRenewable energy sources$xStudy and teaching$zUnited States$vCongresses 606 $aEnergy conservation$xStudy and teaching$zUnited States$vCongresses 608 $aConference papers and proceedings.$2lcgft 615 0$aWind power$xStudy and teaching 615 0$aRenewable energy sources$xStudy and teaching 615 0$aEnergy conservation$xStudy and teaching 701 $aBaring-Gould$b E. Ian$01385348 712 02$aNational Renewable Energy Laboratory (U.S.) 712 12$aWindpower Conference & Exhibition$f(2009 :$eChicago, Ill.) 801 0$bSOE 801 1$bSOE 801 2$bGPO 906 $aBOOK 912 $a9910699001603321 996 $aWind for schools$93480790 997 $aUNINA LEADER 07482nam 2201885 a 450 001 9910778216403321 005 20200520144314.0 010 $a1-282-15898-8 010 $a9786612158988 010 $a1-4008-2617-9 024 7 $a10.1515/9781400826179 035 $a(CKB)1000000000788579 035 $a(EBL)457718 035 $a(OCoLC)437268713 035 $a(SSID)ssj0000232337 035 $a(PQKBManifestationID)11173535 035 $a(PQKBTitleCode)TC0000232337 035 $a(PQKBWorkID)10214021 035 $a(PQKB)10369477 035 $a(DE-B1597)446509 035 $a(OCoLC)979629195 035 $a(DE-B1597)9781400826179 035 $a(Au-PeEL)EBL457718 035 $a(CaPaEBR)ebr10312481 035 $a(CaONFJC)MIL215898 035 $a(MiAaPQ)EBC457718 035 $a(PPN)199244715 035 $a(EXLCZ)991000000000788579 100 $a20031027d2004 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aRadon transforms and the rigidity of the Grassmannians$b[electronic resource] /$fJacques Gasqui and Hubert Goldschmidt 205 $aCourse Book 210 $aPrinceton, N.J. $cPrinceton University Press$d2004 215 $a1 online resource (385 p.) 225 1 $aAnnals of mathematics studies ;$vno. 156 300 $aDescription based upon print version of record. 311 $a0-691-11898-1 311 $a0-691-11899-X 320 $aIncludes bibliographical references (p. [357]-361) and index. 327 $t Frontmatter -- $tTABLE OF CONTENTS -- $tINTRODUCTION -- $tChapter I. Symmetric Spaces and Einstein Manifolds -- $tChapter II. Radon Transforms on Symmetric Spaces -- $tChapter III. Symmetric Spaces of Rank One -- $tChapter IV. The Real Grassmannians -- $tChapter V. The Complex Quadric -- $tChapter VI. The Rigidity of the Complex Quadric -- $tChapter VII. The Rigidity of the Real Grassmannians -- $tChapter VIII. The Complex Grassmannians -- $tChapter IX. The Rigidity of the Complex Grassmannians -- $tChapter X. Products of Symmetric Spaces -- $tReferences -- $tIndex 330 $aThis book provides the first unified examination of the relationship between Radon transforms on symmetric spaces of compact type and the infinitesimal versions of two fundamental rigidity problems in Riemannian geometry. Its primary focus is the spectral rigidity problem: Can the metric of a given Riemannian symmetric space of compact type be characterized by means of the spectrum of its Laplacian? It also addresses a question rooted in the Blaschke problem: Is a Riemannian metric on a projective space whose geodesics are all closed and of the same length isometric to the canonical metric? The authors comprehensively treat the results concerning Radon transforms and the infinitesimal versions of these two problems. Their main result implies that most Grassmannians are spectrally rigid to the first order. This is particularly important, for there are still few isospectrality results for positively curved spaces and these are the first such results for symmetric spaces of compact type of rank ?1. The authors exploit the theory of overdetermined partial differential equations and harmonic analysis on symmetric spaces to provide criteria for infinitesimal rigidity that apply to a large class of spaces. A substantial amount of basic material about Riemannian geometry, symmetric spaces, and Radon transforms is included in a clear and elegant presentation that will be useful to researchers and advanced students in differential geometry. 410 0$aAnnals of mathematics studies ;$vno. 156. 606 $aRadon transforms 606 $aGrassmann manifolds 610 $aAdjoint. 610 $aAutomorphism. 610 $aCartan decomposition. 610 $aCartan subalgebra. 610 $aCasimir element. 610 $aClosed geodesic. 610 $aCohomology. 610 $aCommutative property. 610 $aComplex manifold. 610 $aComplex number. 610 $aComplex projective plane. 610 $aComplex projective space. 610 $aComplex vector bundle. 610 $aComplexification. 610 $aComputation. 610 $aConstant curvature. 610 $aCoset. 610 $aCovering space. 610 $aCurvature. 610 $aDeterminant. 610 $aDiagram (category theory). 610 $aDiffeomorphism. 610 $aDifferential form. 610 $aDifferential geometry. 610 $aDifferential operator. 610 $aDimension (vector space). 610 $aDot product. 610 $aEigenvalues and eigenvectors. 610 $aEinstein manifold. 610 $aElliptic operator. 610 $aEndomorphism. 610 $aEquivalence class. 610 $aEven and odd functions. 610 $aExactness. 610 $aExistential quantification. 610 $aG-module. 610 $aGeometry. 610 $aGrassmannian. 610 $aHarmonic analysis. 610 $aHermitian symmetric space. 610 $aHodge dual. 610 $aHomogeneous space. 610 $aIdentity element. 610 $aImplicit function. 610 $aInjective function. 610 $aInteger. 610 $aIntegral. 610 $aIsometry. 610 $aKilling form. 610 $aKilling vector field. 610 $aLemma (mathematics). 610 $aLie algebra. 610 $aLie derivative. 610 $aLine bundle. 610 $aMathematical induction. 610 $aMorphism. 610 $aOpen set. 610 $aOrthogonal complement. 610 $aOrthonormal basis. 610 $aOrthonormality. 610 $aParity (mathematics). 610 $aPartial differential equation. 610 $aProjection (linear algebra). 610 $aProjective space. 610 $aQuadric. 610 $aQuaternionic projective space. 610 $aQuotient space (topology). 610 $aRadon transform. 610 $aReal number. 610 $aReal projective plane. 610 $aReal projective space. 610 $aReal structure. 610 $aRemainder. 610 $aRestriction (mathematics). 610 $aRiemann curvature tensor. 610 $aRiemann sphere. 610 $aRiemannian manifold. 610 $aRigidity (mathematics). 610 $aScalar curvature. 610 $aSecond fundamental form. 610 $aSimple Lie group. 610 $aStandard basis. 610 $aStokes' theorem. 610 $aSubgroup. 610 $aSubmanifold. 610 $aSymmetric space. 610 $aTangent bundle. 610 $aTangent space. 610 $aTangent vector. 610 $aTensor. 610 $aTheorem. 610 $aTopological group. 610 $aTorus. 610 $aUnit vector. 610 $aUnitary group. 610 $aVector bundle. 610 $aVector field. 610 $aVector space. 610 $aX-ray transform. 610 $aZero of a function. 615 0$aRadon transforms. 615 0$aGrassmann manifolds. 676 $a515/.723 700 $aGasqui$b Jacques$056874 701 $aGoldschmidt$b Hubert$f1942-$056875 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910778216403321 996 $aRadon transforms and the rigidity of the grassmannians$9670617 997 $aUNINA LEADER 02631nam 2200613 450 001 9910788891503321 005 20170816143305.0 010 $a1-4704-0302-1 035 $a(CKB)3360000000464388 035 $a(EBL)3113646 035 $a(SSID)ssj0000973189 035 $a(PQKBManifestationID)11514564 035 $a(PQKBTitleCode)TC0000973189 035 $a(PQKBWorkID)10959857 035 $a(PQKB)11015544 035 $a(MiAaPQ)EBC3113646 035 $a(RPAM)2263671 035 $a(PPN)195410874 035 $a(EXLCZ)993360000000464388 100 $a20780501h19781978 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aBounds on transfer principles for algebraically closed and complete discretely valued fields /$fScott Shorey Brown 210 1$aProvidence :$cAmerican Mathematical Society,$d[1978] 210 4$d©1978 215 $a1 online resource (99 p.) 225 1 $aMemoirs of the American Mathematical Society ;$vnumber 204 300 $aA revision of the author's thesis, Princeton University, 1976. 300 $aIncludes index. 311 $a0-8218-2204-7 320 $aBibliography: pages 89-90. 327 $a""Table of Contents""; ""Abstract""; ""Acknowledgements""; ""I. Introduction""; ""II. Prerequisites in Logic""; ""III. Methods for Limitation of Quantifiers""; ""IV. Additive Rational Numbers""; ""V. Additive Integers""; ""VI. Projection of a Set of Polynomials""; ""VII. Real Numbers""; ""VIII. Valued Fields""; ""IX. Algebraically Closed Fields""; ""X. Convergent Power Series Over Complete Algebraically Closed Valued Fields""; ""XI. Hensel's Lemma""; ""XII. Convergence of Series Solutions of Polynomials"" 327 $a""XIII. Complete Discretely Valued Fields with Residue Class Field Z[sub(p)] and p Large""""XIV. Applications to the Ax-Kochen Transfer Principle and the Artin Conjecture""; ""Bibliography""; ""Notation""; ""Index"" 410 0$aMemoirs of the American Mathematical Society ;$vno. 204. 606 $aAlgebraic fields 606 $aTransfer functions 606 $ap-adic numbers 606 $aValued fields 615 0$aAlgebraic fields. 615 0$aTransfer functions. 615 0$ap-adic numbers. 615 0$aValued fields. 676 $a512/.74 700 $aBrown$b Scott Shorey$f1951-$01545057 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910788891503321 996 $aBounds on transfer principles for algebraically closed and complete discretely valued fields$93799706 997 $aUNINA