LEADER 01179nam0-22003611i-450- 001 990000516300403321 005 20080109115354.0 010 $a0-471-12732-9 035 $a000051630 035 $aFED01000051630 035 $a(Aleph)000051630FED01 035 $a000051630 100 $a20020821d1995----km-y0itay50------ba 101 0 $aeng 105 $aa-------001yy 200 1 $aNonlinear and adaptive control design$fMiroslav Krstic, Ioannis Kanellakopoulos, Petar Kokotovic 210 $aNew York [etc.]$cWiley & sons$dc1995 215 $a563 p.$cill.$d24 cm 225 1 $aAdaptive and learning systems for signal processing, communications and control 610 0 $aControlli automatici 610 0 $aTeoria del controllo non lineare 610 0 $aControllo dei sistemi adattivi 676 $a629.836 700 1$aKrstic,$bMiroslav$0475300 701 1$aKanellakopoulos,$bIoannis$0492151 701 1$aKokotovi?,$bPetar V.$027947 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990000516300403321 952 $a10 D III 700$bdis 3273$fDINEL 959 $aDINEL 996 $aNonlinear and adaptive control design$9330855 997 $aUNINA LEADER 03448nam 22006375 450 001 9910299987903321 005 20200701135338.0 010 $a81-322-2092-7 024 7 $a10.1007/978-81-322-2092-3 035 $a(CKB)3710000000238454 035 $a(OCoLC)890793182 035 $a(CaPaEBR)ebrary10929876 035 $a(SSID)ssj0001354072 035 $a(PQKBManifestationID)11773478 035 $a(PQKBTitleCode)TC0001354072 035 $a(PQKBWorkID)11322111 035 $a(PQKB)10194893 035 $a(MiAaPQ)EBC1966228 035 $a(DE-He213)978-81-322-2092-3 035 $a(PPN)181348640 035 $a(EXLCZ)993710000000238454 100 $a20140910d2014 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aChaotic Dynamics in Nonlinear Theory$b[electronic resource] /$fby Lakshmi Burra 205 $a1st ed. 2014. 210 1$aNew Delhi :$cSpringer India :$cImprint: Springer,$d2014. 215 $a1 online resource (118 p.) 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a81-322-2091-9 320 $aIncludes bibliographical references and index. 327 $aChapter 1. Topological Considerations -- Chapter 2. Topological horseshoes and coin-tossing dynamics -- Chapter 3. Chaotic Dynamics in the vertically driven planar pendulum -- Chapter 4. Chaos in a pendulum with variable length. 330 $aUsing phase?plane analysis, findings from the theory of topological horseshoes and linked-twist maps, this book presents a novel method to prove the existence of chaotic dynamics. In dynamical systems, complex behavior in a map can be indicated by showing the existence of a Smale-horseshoe-like structure, either for the map itself or its iterates. This usually requires some assumptions about the map, such as a diffeomorphism and some hyperbolicity conditions. In this text, less stringent definitions of a horseshoe have been suggested so as to reproduce some geometrical features typical of the Smale horseshoe, while leaving out the hyperbolicity conditions associated with it. This leads to the study of the so-called topological horseshoes. The presence of chaos-like dynamics in a vertically driven planar pendulum, a pendulum of variable length, and in other more general related equations is also proved. 606 $aDynamics 606 $aErgodic theory 606 $aDifferential equations, Partial 606 $aStatistical physics 606 $aDynamical Systems and Ergodic Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M1204X 606 $aPartial Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12155 606 $aApplications of Nonlinear Dynamics and Chaos Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/P33020 615 0$aDynamics. 615 0$aErgodic theory. 615 0$aDifferential equations, Partial. 615 0$aStatistical physics. 615 14$aDynamical Systems and Ergodic Theory. 615 24$aPartial Differential Equations. 615 24$aApplications of Nonlinear Dynamics and Chaos Theory. 676 $a531.11 700 $aBurra$b Lakshmi$4aut$4http://id.loc.gov/vocabulary/relators/aut$0721178 906 $aBOOK 912 $a9910299987903321 996 $aChaotic dynamics in nonlinear theory$91410000 997 $aUNINA