LEADER 00851nam0-22003011i-450- 001 990000478650403321 005 20080430103714.0 010 $a0-12-459950-8 035 $a000047865 035 $aFED01000047865 035 $a(Aleph)000047865FED01 035 $a000047865 100 $a20020821d1975----km-y0itay50------ba 101 0 $aeng 105 $aa-------001yy 200 1 $aMathematical functions and their approximations$fYudell L. Luke 210 $aNew York$cAcademic Press$d1975 215 $a568 p.$cill.$d24 cm 610 0 $aMatematica$atavole 676 $a515 700 1$aLuke,$bYudell L.$012745 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990000478650403321 952 $a10 B II 322$b591 DE$fDINEL 959 $aDINEL 996 $aMathematical functions and their approximations$945513 997 $aUNINA LEADER 01096nam a2200325 i 4500 001 991001023579707536 005 20020507105245.0 008 960319s1994 uk ||| | eng 020 $a0748400273 035 $ab10162884-39ule_inst 035 $aLE00640899$9ExL 040 $aDip.to Fisica$bita 084 $a53.1.62 084 $a53.1.65 084 $a53.1.66 084 $a53.1.67 084 $a53.7.4 084 $a53.8.22 100 1 $aStauffer, Dietrich$015408 245 10$aIntroduction to percolation theory /$cDietrich Stauffer and Amnon Aharony 250 $arev. 2nd ed 260 $aLondon :$bTaylor and Francis,$c1994 300 $ax, 181 p. ;$c23 cm. 700 1 $aAharony, Amnon$eauthor$4http://id.loc.gov/vocabulary/relators/aut$0733185 907 $a.b10162884$b21-09-06$c27-06-02 912 $a991001023579707536 945 $aLE006 53.1.67 STA$g1$i2006000172042$lle006$o-$pE0.00$q-$rl$s- $t0$u2$v0$w2$x0$y.i1019731x$z27-06-02 996 $aIntroduction to percolation theory$91444892 997 $aUNISALENTO 998 $ale006$b01-01-96$cm$da $e-$feng$guk $h0$i1