LEADER 01418cam0-22005051i-450- 001 990000008300403321 005 20161025140649.0 035 $a000000830 035 $aFED01000000830 035 $a(Aleph)000000830FED01 035 $a000000830 100 $a20020821d1977----km-y0itay50------ba 101 0 $aita 102 $aIT 105 $ay-------001yy 200 1 $aEsercizi di elettrotecnica$ecircuiti$fGiulio Fabricatore 210 $aNapoli$cLiguori$d1977 215 $a259 p.$d23 cm 610 0 $aElettrotecnica$aEsercizi 610 0 $aCircuiti elettrici 610 0 $aCircuiti 610 0 $aElettrotecnica 676 $a621.3 676 $a621.381.5 700 1$aFabricatore,$bGiulio$0721 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990000008300403321 952 $a13 26 09$b2444$fFINBC 952 $a13 B 64 30$b31268$fFINBC 952 $a13 X 73$b32276$fFINBC 952 $a13 B 62 32$b31271$fFINBC 952 $a13 B 62 29$b31272$fFINBC 952 $a13 B 62 31$b31270$fFINBC 952 $a13 X 95$b31269$fFINBC 952 $a13 26 10$b2445$fFINBC 952 $a13 P 06 14$b806$fFINBC 952 $a13 P 06 13$b805$fFINBC 952 $a13 P 06 17$b2443$fFINBC 952 $a10 C I 284$b9600$fDINEL 952 $a10 C I 283$b9599$fDINEL 959 $aFINBC 959 $aDINEL 996 $aEsercizi di elettrotecnica$9108036 997 $aUNINA LEADER 03772nam 2200805 a 450 001 9910965251603321 005 20250411143923.0 010 $a9786611775537 010 $a9781107173989 010 $a1107173981 010 $a9781281775535 010 $a1281775533 010 $a9780511423505 010 $a0511423500 010 $a9780511422300 010 $a051142230X 010 $a9780511423987 010 $a0511423985 010 $a9780511421648 010 $a0511421648 010 $a9780511755170 010 $a0511755171 010 $a9780511422966 010 $a0511422962 035 $a(CKB)1000000000555775 035 $a(EBL)355437 035 $a(OCoLC)476178251 035 $a(SSID)ssj0000102989 035 $a(PQKBManifestationID)11127632 035 $a(PQKBTitleCode)TC0000102989 035 $a(PQKBWorkID)10081346 035 $a(PQKB)11678474 035 $a(UkCbUP)CR9780511755170 035 $a(Au-PeEL)EBL355437 035 $a(CaPaEBR)ebr10246215 035 $a(CaONFJC)MIL177553 035 $a(MiAaPQ)EBC355437 035 $a(PPN)261304305 035 $a(EXLCZ)991000000000555775 100 $a20071231d2008 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAnalysis on Lie groups $ean introduction /$fJacques Faraut 205 $a1st ed. 210 $aCambridge, UK ;$aNew York $cCambridge University Press$d2008 215 $a1 online resource (x, 302 pages) $cdigital, PDF file(s) 225 1 $aCambridge studies in advanced mathematics ;$v110 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 08$a9780521719308 311 08$a0521719305 320 $aIncludes bibliographical references (p. 299-300) and index. 327 $aThe linear group -- The exponential map -- Linear Lie groups -- Lie algebras -- Haar measure -- Representations of compact groups -- The groups SU(2) and SO(3), Haar measure -- Analysis on the group SU(2) -- Analysis on the sphere and the Euclidean space -- Analysis on the spaces of symmetric and Hermitian matrices -- Irreducible representations of the unitary group -- Analysis on the unitary group. 330 $aThe subject of analysis on Lie groups comprises an eclectic group of topics which can be treated from many different perspectives. This self-contained text concentrates on the perspective of analysis, to the topics and methods of non-commutative harmonic analysis, assuming only elementary knowledge of linear algebra and basic differential calculus. The author avoids unessential technical discussions and instead describes in detail many interesting examples, including formulae which have not previously appeared in book form. Topics covered include the Haar measure and invariant integration, spherical harmonics, Fourier analysis and the heat equation, Poisson kernel, the Laplace equation and harmonic functions. Perfect for advanced undergraduates and graduates in geometric analysis, harmonic analysis and representation theory, the tools developed will also be useful for specialists in stochastic calculation and the statisticians. With numerous exercises and worked examples, the text is ideal for a graduate course on analysis on Lie groups. 410 0$aCambridge studies in advanced mathematics ;$v110. 606 $aLie groups 606 $aLie algebras 615 0$aLie groups. 615 0$aLie algebras. 676 $a512/.482 700 $aFaraut$b Jacques$f1940-$056814 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910965251603321 996 $aAnalysis on Lie groups$9718896 997 $aUNINA